| 注册
首页|期刊导航|水力发电学报|融合自适应特征与优化KELM的抽蓄机组振动预测

融合自适应特征与优化KELM的抽蓄机组振动预测

付文龙 祝鑫锋 熊浩伟 相莹 邵孟欣 孔泽昊 孙政

水力发电学报2025,Vol.44Issue(8):20-30,11.
水力发电学报2025,Vol.44Issue(8):20-30,11.DOI:10.11660/slfdxb.20250803

融合自适应特征与优化KELM的抽蓄机组振动预测

Vibration predictions of pumped storage units based on adaptive feature and optimized KELM

付文龙 1祝鑫锋 2熊浩伟 2相莹 3邵孟欣 2孔泽昊 2孙政4

作者信息

  • 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002||三峡大学 梯级水电站运行与控制湖北省重点实验室,湖北 宜昌 443002
  • 2. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 3. 华东天荒坪抽水蓄能有限责任公司,浙江 安吉 313300
  • 4. 湖北白莲河抽水蓄能有限公司,湖北 黄冈 438600
  • 折叠

摘要

Abstract

This paper presents a vibration prediction method of pumped storage units based on adaptive features and an optimized kernel extreme learning machine(KELM)to reduce the impact of the nonlinear,non-stationary characteristics of vibration signals on the accuracy of vibration predictions.First,we use improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)to decompose a vibration signal and generate the intrinsic mode components of different frequencies.And,an autoencoder is used to extract the features of these components adaptively and capture their key features dynamically.Then,a KELM prediction model is developed to predict each component separately,using a modified DEIHHO algorithm to optimize its regularization parameter and kernel parameter.Finally,the final prediction result of unit vibration is obtained by superadding the predictions of all the components.Comparison with previous experimental data shows our new method is better in vibration prediction of pumped storage units and improves the accuracy effectively.

关键词

振动预测/自适应特征/核极限学习机/改进的自适应噪声完全集成经验模态分解/自编码器/差分进化-改进哈里斯鹰算法

Key words

vibration prediction/adaptive feature/kernel extreme learning machine/improved complete ensemble empirical mode decomposition with adaptive noise/autoencoder/differential evolution-improved Harris hawk optimization

分类

建筑与水利

引用本文复制引用

付文龙,祝鑫锋,熊浩伟,相莹,邵孟欣,孔泽昊,孙政..融合自适应特征与优化KELM的抽蓄机组振动预测[J].水力发电学报,2025,44(8):20-30,11.

基金项目

国家自然科学基项目(51741907) (51741907)

水力发电学报

OA北大核心

1003-1243

访问量0
|
下载量0
段落导航相关论文