| 注册
首页|期刊导航|沈阳航空航天大学学报|融合先验知识的藏久棋MCTS算法优化

融合先验知识的藏久棋MCTS算法优化

王亚杰 谷峰 刘松 杨静怡 王世鹏

沈阳航空航天大学学报2025,Vol.42Issue(4):59-67,9.
沈阳航空航天大学学报2025,Vol.42Issue(4):59-67,9.DOI:10.3969/j.issn.2095-1248.2025.04.009

融合先验知识的藏久棋MCTS算法优化

Optimization of MCTS algorithm for Tibetan Jiu Chess by incorporating prior knowledge

王亚杰 1谷峰 1刘松 1杨静怡 1王世鹏1

作者信息

  • 1. 沈阳航空航天大学 工程训练中心,沈阳 110136
  • 折叠

摘要

Abstract

Tibetan Jiu Chess,a traditional folk chess game,is a complete information game that carries the profound Tibetan civilization and splendid culture.In view of the complexity of the rule system and the diversity of the game changes,the traditional game search algorithm is unable to cope with the vast game board and complex strategies.In order to improve the intelligence level of Tibetan Jiu Chess,a Monte Carlo tree search(MCTS)algorithm optimization strategy incorporating prior knowledge was proposed.The strategy was based on deep reinforcement learning in the key phases of layout planning and move strategy,and the strategy selection optimization function and evaluation function were designed by integrating the prior knowledge of domain experts.The search process of MCTS was efficiently guided by functions,and the best model for high-quality tessellation could be trained.Experimental results show that the improved MCTS algorithm achieves significant performance in the game.

关键词

藏久棋/先验知识/蒙特卡洛树搜索/深度强化学习/策略选择优化函数/评估函数

Key words

Tibetan Jiu Chess/prior knowledge/Monte Carlo tree search/deep reinforcement learning/strategy selection optimization function/evaluation function

分类

信息技术与安全科学

引用本文复制引用

王亚杰,谷峰,刘松,杨静怡,王世鹏..融合先验知识的藏久棋MCTS算法优化[J].沈阳航空航天大学学报,2025,42(4):59-67,9.

基金项目

中国科协科普提升类项目(项目编号:KXYJS2022092). (项目编号:KXYJS2022092)

沈阳航空航天大学学报

2095-1248

访问量0
|
下载量0
段落导航相关论文