智能系统学报2025,Vol.20Issue(4):776-786,11.DOI:10.11992/tis.202402012
基于时空动态图的交通流量预测方法研究
Research on traffic flow prediction method based on spatial-temporal dynamic graph convolutional network
摘要
Abstract
To address the limitations of existing traffic flow prediction methods in modeling spatio-temporal data and capturing dynamic spatial correlations,a spatio-temporal dynamic graph network(STDGNet)is proposed.This model adopts an encoder-decoder architecture with an embedding layer and utilizes a dynamic graph generation module to un-cover potential spatio-temporal relationships from a data-driven perspective,reconstructing the dynamic correlation graph of nodes at each time step.The embedding layer employs a spatio-temporal adaptive embedding method to model the intrinsic spatio-temporal relationships and temporal information of traffic data.The encoder part uses a spatio-tem-poral memory attention mechanism to model spatio-temporal features from a global perspective.The decoder part incor-porates a graph convolution module into a recurrent neural network to simultaneously capture temporal and spatial de-pendencies and output future traffic conditions.Experimental results show that,compared with the optimal baseline model decoupled dynamic spatial-temporal graph neural network(D2STGNN),the proposed model reduces mean abso-lute error by an average of 1.63%and reduces model training time by nearly 2.5 times.This study effectively improves the accuracy and efficiency of traffic flow prediction,providing strong support for the development of intelligent trans-portation systems.关键词
交通流量/时空数据/混合模型/注意力机制/时空动态图/图卷积神经网络/循环神经网络/深度学习Key words
traffic flow/spatio-temporal data/hybrid model/attention mechanism/spatio-temporal dynamic graph/graph convolutional neural network/recurrent neural network/deep learning分类
信息技术与安全科学引用本文复制引用
孟祥福,谢伟鹏,崔江燕..基于时空动态图的交通流量预测方法研究[J].智能系统学报,2025,20(4):776-786,11.基金项目
国家自然科学基金面上项目(61772249). (61772249)