| 注册
首页|期刊导航|智能系统学报|面向边缘设备的目标检测模型研究

面向边缘设备的目标检测模型研究

徐伟峰 雷耀 王洪涛 张旭

智能系统学报2025,Vol.20Issue(4):871-881,11.
智能系统学报2025,Vol.20Issue(4):871-881,11.DOI:10.11992/tis.202406015

面向边缘设备的目标检测模型研究

Research on object detection models for edge devices

徐伟峰 1雷耀 2王洪涛 1张旭2

作者信息

  • 1. 华北电力大学(保定)计算机系,河北保定 071003||河北省能源电力知识计算重点实验室,河北保定 071003
  • 2. 华北电力大学(保定)计算机系,河北保定 071003
  • 折叠

摘要

Abstract

Existing object detection models can be improved in terms of balancing detection performance and inference speed on edge devices.Hence,a YOLO(you can only look once)v8-based model optimized for various edge devices is proposed.In the Backbone,an EC2f(extended coarse-to-fine)structure is designed to reduce parameters,computation,and data read/write volume.In the Neck,the YOLOv6-3.0 version is used to accelerate inference while maintaining ac-curacy.In the Head,a multiscale convolutional detection head,which further reduces computational load and complex-ity,is featured.Two versions(n/s scales)are designed to suit different edge devices.Experiments on an X-ray dataset demonstrate that the proposed model improves inference accuracy by 0.5%/1.7%and speed by 11.6%/11.2%compared with baseline models of the same scale.Generalization tests on other datasets present an increase in inference speed of over 10%and an accuracy reduction controlled within 1.3%.Overall,the model achieves a satisfactory balance between inference accuracy and speed.

关键词

目标检测/YOLO/边缘设备/推理精度/推理速度/数据读写量/计算复杂度/模型部署

Key words

object detection/YOLO/edge devices/inference accuracy/inference speed/data read/write volume/compu-tational load/model deployment

分类

信息技术与安全科学

引用本文复制引用

徐伟峰,雷耀,王洪涛,张旭..面向边缘设备的目标检测模型研究[J].智能系统学报,2025,20(4):871-881,11.

基金项目

国家自然科学基金项目(61802124) (61802124)

中央高校基本科研业务费专项(2023MS137) (2023MS137)

中国高校产学研创新基金项目(2023DT6). (2023DT6)

智能系统学报

OA北大核心

1673-4785

访问量0
|
下载量0
段落导航相关论文