| 注册
首页|期刊导航|液晶与显示|基于PSI-IPENet的两帧移相干涉相位恢复算法

基于PSI-IPENet的两帧移相干涉相位恢复算法

许莎莎 杨承霖 李明星 葛久捌 吴晶晶 俞琳 朱华新 胡立发

液晶与显示2025,Vol.40Issue(8):1154-1162,9.
液晶与显示2025,Vol.40Issue(8):1154-1162,9.DOI:10.37188/CJLCD.2025-0077

基于PSI-IPENet的两帧移相干涉相位恢复算法

Two-frame phase-shifting interferometry phase retrieval algorithm based on PSI-IPENet

许莎莎 1杨承霖 1李明星 2葛久捌 1吴晶晶 1俞琳 1朱华新 1胡立发1

作者信息

  • 1. 江南大学 理学院,江苏 无锡 214122||江苏省轻工光电工程中心,江苏 无锡 214122
  • 2. 西安应用光学研究所,陕西 西安 710018
  • 折叠

摘要

Abstract

Phase-shifting interferometry is a widely used technique in precision optical metrology.However,conventional PSI methods typically require three or more phase-shifted interferograms,which limits their applicability in dynamic measurements and vibration-sensitive environments.To address this issue,this paper proposes a deep learning-based framework named PSI-IPENet.The framework adopts a Two-to-One structure,where two phase-shifted interferograms are used as dual-channel input,corresponding to a single phase map as the supervisory signal,and a dedicated dataset is constructed for training.PSI-IPENet leverages the feature extraction capability of IPENet and incorporates the physical characteristics of interferometric imaging,thereby enhancing the robustness and noise resistance of phase retrieval.Experimental results demonstrate that the proposed method maintains high-precision phase recovery performance even with a low number of input frames.Compared with the traditional four-step phase-shifting method,it shows significant advantages in terms of signal-to-noise ratio and phase error metrics.

关键词

移相干涉/相位恢复/深度学习/IPENet

Key words

phase-shifting interferometry/phase retrieval/deep learning/IPENet

分类

数理科学

引用本文复制引用

许莎莎,杨承霖,李明星,葛久捌,吴晶晶,俞琳,朱华新,胡立发..基于PSI-IPENet的两帧移相干涉相位恢复算法[J].液晶与显示,2025,40(8):1154-1162,9.

基金项目

国家自然科学基金(No.61475152,No.62205127)Supported by National Natural Science Foundation of China(No.61475152,No.62205127) (No.61475152,No.62205127)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文