| 注册
首页|期刊导航|液晶与显示|基于深度学习的单目标跟踪算法研究进展

基于深度学习的单目标跟踪算法研究进展

高世严 柳杰 陈文艺 贺泽民 杨海燕 苗宗成

液晶与显示2025,Vol.40Issue(8):1202-1218,17.
液晶与显示2025,Vol.40Issue(8):1202-1218,17.DOI:10.37188/CJLCD.2025-0081

基于深度学习的单目标跟踪算法研究进展

Review of single object tracking algorithm based on deep learning

高世严 1柳杰 1陈文艺 1贺泽民 1杨海燕 1苗宗成2

作者信息

  • 1. 西京学院 材料与能源科学技术研究院,陕西省液晶聚合物智能显示重点实验室,陕西 西安,710123||西京学院 电子信息学院,石油和化工行业液晶聚合物柔性显示技术重点实验室,陕西 西安,710123
  • 2. 西京学院 材料与能源科学技术研究院,陕西省液晶聚合物智能显示重点实验室,陕西 西安,710123||西北工业大学 光电与智能研究院,陕西 西安,710072
  • 折叠

摘要

Abstract

Single object tracking is a crucial task in computer vision,aiming to accurately locate a target in a video sequence.Although deep learning has significantly advanced the field of single object tracking,challenges such as target deformation,complex backgrounds,occlusion,and scale variation still remain.This paper systematically reviews the development of deep learning-based single object tracking methods over the past decade,covering traditional sequence models based on convolutional neural networks,recurrent neural networks,and Siamese networks,as well as hybrid architectures combining convolutional neural networks with Transformers and the latest approaches entirely based on Transformers.Furthermore,we evaluate the performance of different methods in terms of accuracy,robustness,and computational efficiency on benchmark datasets such as OTB100,LaSOT,and GOT-10k,followed by an in-depth analysis.Finally,we discuss the future research directions of deep learning-based single object tracking algorithms.

关键词

单目标跟踪/视觉目标跟踪/深度学习/卷积神经网络

Key words

single-object tracking/deep learning/visual object tracking/Transformer tracking

分类

信息技术与安全科学

引用本文复制引用

高世严,柳杰,陈文艺,贺泽民,杨海燕,苗宗成..基于深度学习的单目标跟踪算法研究进展[J].液晶与显示,2025,40(8):1202-1218,17.

基金项目

国家自然科学基金(No.52173263) (No.52173263)

国家重点研发计划(No.2022YFB3603703)Supported by National Natural Science Foundation of China(No.52173263) (No.2022YFB3603703)

National Key Research and Development Program of China(No.2022YFB3603703) (No.2022YFB3603703)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文