| 注册
首页|期刊导航|航空科学技术|基于深度强化学习的飞行控制方法研究现状及发展

基于深度强化学习的飞行控制方法研究现状及发展

卓博群 杨文骏 李建康

航空科学技术2025,Vol.36Issue(8):1-10,10.
航空科学技术2025,Vol.36Issue(8):1-10,10.DOI:10.19452/j.issn1007-5453.2025.08.001

基于深度强化学习的飞行控制方法研究现状及发展

Research Status and Development of Flight Control Methods Based on Deep Reinforcement Learning

卓博群 1杨文骏 1李建康1

作者信息

  • 1. 航空工业西安飞行自动控制研究所飞行控制航空科技重点实验室,陕西 西安 710065
  • 折叠

摘要

Abstract

With the rapid development of aviation technology,the demand for intelligent flight control systems is increasing.Deep reinforcement learning,as a cutting-edge artificial intelligence technology,provides new ideas for solving complex control problems in aircraft and has important theoretical and practical value.This article delves into the application of deep reinforcement learning in flight control,analyzes its basic principles,and explores controller design methods and performance evaluation.Research has found that deep reinforcement learning can effectively handle nonlinear and uncertain problems in aircraft control,and achieve efficient control by learning the optimal flight strategy through the interaction between intelligent agents and the environment.This article also analyzes the main types of deep reinforcement learning algorithms and examines the control effects of several algorithms.Although deep reinforcement learning methods have unique advantages in dealing with complex flight control problems,they also face challenges in training efficiency and generalization ability.

关键词

深度强化学习/飞行控制系统/人工智能

Key words

deep reinforcement learning/flight control system/artificial intelligence

分类

信息技术与安全科学

引用本文复制引用

卓博群,杨文骏,李建康..基于深度强化学习的飞行控制方法研究现状及发展[J].航空科学技术,2025,36(8):1-10,10.

基金项目

航空科学基金(201905018003) (201905018003)

陕西省秦创原创新"科学家+工程师"队伍建设基金(2023KXJ-075) Aeronautical Science Foundation of China(201905018003) (2023KXJ-075)

Shaanxi Province QinChuangYuan"Scientist+Engineer"Team Construction Fund(2023KXJ-075) (2023KXJ-075)

航空科学技术

1007-5453

访问量0
|
下载量0
段落导航相关论文