| 注册
首页|期刊导航|自动化与信息工程|基于改进YOLOv8的瓶装产品褶皱检测模型

基于改进YOLOv8的瓶装产品褶皱检测模型

曹海文 陈德平 杨丹妮 王楠 钟震宇 段二强

自动化与信息工程2025,Vol.46Issue(4):11-21,11.
自动化与信息工程2025,Vol.46Issue(4):11-21,11.DOI:10.12475/aie.20250402

基于改进YOLOv8的瓶装产品褶皱检测模型

Wrinkle Detection Model for Bottled Products Based on Improved YOLOv8

曹海文 1陈德平 2杨丹妮 3王楠 3钟震宇 3段二强4

作者信息

  • 1. 广东工业大学,广东 广州 510006||广东省科学院智能制造研究所,广东 广州 510070
  • 2. 广东省科学院智能制造研究所,广东 广州 510070||汕头大学,广东 汕头 515063
  • 3. 广东省科学院智能制造研究所,广东 广州 510070
  • 4. 佛山市云米电器科技有限公司,广东 佛山 528308
  • 折叠

摘要

Abstract

Aiming at the random rotation angles,multi-scale characteristics,and low contrast with the bottle background of wrinkles in bottled products,this paper proposes an improved YOLOv8-based wrinkle detection model for bottled products.The model utilizes the Sobel operator to extract edge features and enhances edge extraction capability in low-contrast regions by fusing edge features with spatial features.By integrating convolution and additive attention mechanisms,the YOLOv8 model can simultaneously extract global and local features of the image,improving its ability to feature fusion wrinkles of different scales and enhancing robustness against rotated targets.The fast spatial pyramid pooling module is replaced with an intra-scale feature interaction module based on attention,strengthening the backbone network's ability to extract wrinkle features within the same scale and decoupling feature extraction from multi-scale feature fusion tasks.The path aggregation network is improved using a bidirectional feature pyramid network,which dynamically adjusts feature weights through weighted feature fusion to enhance the model's feature fusion capability.Based on this model,a wrinkle detection system for bottled products is constructed.Experimental results show that the improved YOLOv8 model achieves an AP50 of 82.3%,a 6.6%improvement over the YOLOv8-OBB model,demonstrating superior performance in wrinkle detection for bottled products.Verified on actual production lines,the system meets industrial requirements in terms of detection accuracy,inference speed,and stability.

关键词

瓶装产品褶皱检测/改进YOLOv8/Sobel算子/加性注意力机制/基于注意力的尺度内特征交互模块/双向特征金字塔网络

Key words

bottled products wrinkle detection/improved YOLOv8/Sobel operator/additive attention mechanism/attention-based intra-scale feature interaction module/bidirectional feature pyramid network

分类

信息技术与安全科学

引用本文复制引用

曹海文,陈德平,杨丹妮,王楠,钟震宇,段二强..基于改进YOLOv8的瓶装产品褶皱检测模型[J].自动化与信息工程,2025,46(4):11-21,11.

基金项目

佛山市顺德区科技创新项目(2130218002519) (2130218002519)

广东省科学院青年人才专项(2024GDASQNRC-0327). (2024GDASQNRC-0327)

自动化与信息工程

1674-2605

访问量0
|
下载量0
段落导航相关论文