| 注册
首页|期刊导航|自动化与信息工程|改进U-Net的X射线乳腺肿瘤区域分割方法

改进U-Net的X射线乳腺肿瘤区域分割方法

陈翔 蔡延光 龚国俊 张瑞湖 蔡颢

自动化与信息工程2025,Vol.46Issue(4):28-34,7.
自动化与信息工程2025,Vol.46Issue(4):28-34,7.DOI:10.12475/aie.20250404

改进U-Net的X射线乳腺肿瘤区域分割方法

X-ray Breast Tumor Region Segmentation Method Using an Improved U-Net

陈翔 1蔡延光 2龚国俊 3张瑞湖 4蔡颢5

作者信息

  • 1. 广东工业大学自动化学院,广东 广州 510006
  • 2. 广东工业大学自动化学院,广东 广州 510006||广州理工学院智能制造与电气工程学院,广东 广州 510540
  • 3. 广东省岭南工商第一技师学院,广东 广州 510000
  • 4. 广东省粤东技师学院,广东 汕头 515000
  • 5. 东莞实业投资控股集团有限公司,广东 东莞 523000
  • 折叠

摘要

Abstract

Breast cancer is a serious disease that threatens women's health,and timely and accurate diagnosis is crucial for reducing its mortality rate.To improve the accuracy of breast cancer diagnosis,this study proposes an enhanced U-Net-based method for segmenting breast tumor regions in X-ray images.First,a parallel attention module is constructed by integrating spatial and channel attention mechanisms to strengthen the network's ability to extract and identify key features.Next,the parallel attention module is combined with a residual module to design a residual parallel attention module,enhancing the U-Net model's deep feature extraction and high-efficiency focusing capabilities.Finally,the residual parallel attention module is incorporated into the encoder part of the U-Net model,improving its segmentation accuracy for X-ray breast tumor regions.Experimental results on the CBIS-DDSM dataset demonstrate that the improved U-Net model achieves Dice coefficients and mean intersection over union(mIoU)of 94.20%and 90.76%,respectively,significantly enhancing the segmentation accuracy of X-ray breast tumor regions.

关键词

图像分割/注意力机制/乳腺肿瘤/残差网络/U-Net

Key words

image segmentation/attention mechanism/breast tumor/residual network/U-Net

分类

信息技术与安全科学

引用本文复制引用

陈翔,蔡延光,龚国俊,张瑞湖,蔡颢..改进U-Net的X射线乳腺肿瘤区域分割方法[J].自动化与信息工程,2025,46(4):28-34,7.

基金项目

广东省科技计划项目(2016A050502060,2020B-1010010005) (2016A050502060,2020B-1010010005)

广州市科技计划项目(202206010011,2023B-03J1339). (202206010011,2023B-03J1339)

自动化与信息工程

1674-2605

访问量0
|
下载量0
段落导航相关论文