| 注册
首页|期刊导航|上海交通大学学报(医学版)|基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用

基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用

黄昕 刘家辉 叶敬文 钱文莉 许万星 王琳

上海交通大学学报(医学版)2025,Vol.45Issue(8):1009-1016,8.
上海交通大学学报(医学版)2025,Vol.45Issue(8):1009-1016,8.DOI:10.3969/j.issn.1674-8115.2025.08.008

基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用

Development and clinical application of a machine learning-driven model for metabolite-based diagnosis of small cell lung cancer

黄昕 1刘家辉 1叶敬文 1钱文莉 1许万星 1王琳1

作者信息

  • 1. 上海交通大学医学院附属第一人民医院检验医学中心,上海 200080||上海交通大学医学院医学技术学院,上海 200025
  • 折叠

摘要

Abstract

Objective·To develop an early diagnostic model for small cell lung cancer(SCLC)based on differences in serum metabolite expression profiles between patients with SCLC and those with benign pulmonary diseases,using machine learning algorithms.Methods·Serum samples were collected from 29 SCLC patients and 67 patients with benign lung diseases at Shanghai General Hospital,Shanghai Jiao Tong University School of Medicine,as the training cohort.An independent external validation cohort included 20 SCLC patients and 40 patients with benign lung diseases from Gansu Provincial Cancer Hospital.A total of 69 serum metabolites were quantitatively analyzed using liquid chromatography-tandem mass spectrometry(LC-MS/MS).The XGBoost Classifier was employed to rank metabolite importance,and a forward feature selection strategy based on XGBoost was used to identify a subset of key metabolites.Diagnostic models were constructed using AdaBoost,random forest(RF),and light gradient boosting machine(LGBM)algorithms.Model performance was assessed using receiver operating characteristic(ROC)curves and the area under the curve(AUC),and validated on the external test cohort.Results·Principal component analysis(PCA)and orthogonal projections to latent structures-discriminant analysis(OPLS-DA)of the training cohort revealed distinct metabolic profiles between SCLC and benign lung disease patients.Based on feature importance rankings,six key metabolites were selected to construct the MTB-6 diagnostic model.Among the models,AdaBoost achieved the best performance,with an AUC of 0.943,sensitivity of 75.0%,and specificity of 90.9%in the training cohort.In the external test cohort,the model demonstrated robust performance with an AUC of 0.921,sensitivity of 80.0%,and specificity of 87.5%.Conclusion·The MTB-6 model,based on six serum metabolites and the AdaBoost algorithm,exhibits excellent diagnostic performance and holds potential for the differential diagnosis of SCLC and benign pulmonary diseases.

关键词

小细胞肺癌/诊断模型/机器学习/代谢组学/液相色谱-串联质谱法

Key words

small cell lung cancer(SCLC)/diagnosis model/machine learning/metabolomics/liquid chromatography-tandem mass spectrometry(LC-MS/MS)

分类

医药卫生

引用本文复制引用

黄昕,刘家辉,叶敬文,钱文莉,许万星,王琳..基于机器学习的小细胞肺癌代谢分子诊断模型的建立和临床应用[J].上海交通大学学报(医学版),2025,45(8):1009-1016,8.

基金项目

国家自然科学基金(82273418) (82273418)

上海市科学技术委员会医学创新研究专项(22Y11902800). National Natural Science Foundation of China(82273418) (22Y11902800)

Medical Innovation Project of Science and Technology Commission of Shanghai Municipality(22Y11902800). (22Y11902800)

上海交通大学学报(医学版)

OA北大核心

1674-8115

访问量0
|
下载量0
段落导航相关论文