首页|期刊导航|青岛大学学报(自然科学版)|贝叶斯推断下部分线性模型中非参数部分的估计

贝叶斯推断下部分线性模型中非参数部分的估计OA

Estimation of the Nonparametric Component of Partial Linear Models under Bayesian Inference

中文摘要英文摘要

在处理部分线性模型的非参数分量问题时,传统的高斯过程先验方法虽然可以得到非参数分量的估计,但计算效率较低,不适合处理高维且数据量较大的数据.为此,采用重构参数化法对部分线性模型中非参数部分进行插值重构,对重构后的新参数给予新的先验分布,再通过贝叶斯推断得到各个参数封闭形式的后验分布.数值模拟结果表明,本文提出的方法能够有效降低计算成本,获得较优的推理结果.

When dealing with the nonparametric component of partial linear models,tradi-tional Gaussian process prior methods,while capable of estimating the nonparametric component,have low computational efficiency and are not suitable for handling high-di-mensional data with large sample sizes.To address this issue,a reparameterized method was employed to interpolate and reconstruct the nonparametric component of partial linear models.New prior distributions were assigned to the parameters obtained after recon-struction.Based on these new priors,Bayesian inference was then utilized to derive the closed-form posterior distributions of the parameters.Numerical simulation results dem-onstrate that the method proposed in this article can effectively reduce computational costs and achieve satisfactory inferential outcomes.

赵伯涵;杨建奎

北京邮电大学理学院,北京 100876北京邮电大学理学院,北京 100876

数理科学

部分线性模型贝叶斯推断高斯过程重构参数化

partially linear modelBayesian inferenceGaussian processreconstruction parameterization

《青岛大学学报(自然科学版)》 2025 (3)

7-14,49,9

10.3969/j.issn.1006-1037.2025.03.02

评论