首页|期刊导航|青岛大学学报(自然科学版)|基于Tucker分解和季节性自回归移动平均模型的出租车出行需求预测

基于Tucker分解和季节性自回归移动平均模型的出租车出行需求预测OA

Taxi Travel Demand Forecasting Based on Tucker Decomposition and Seasonal Autoregressive Integrated Moving Average Model

中文摘要英文摘要

为提高出租车出行需求预测的准确性和效率,提出了一种结合Tucker分解和季节性自回归移动平均模型.对Tucker分解后的核心张量进行时空建模,更好地捕获出租车出行需求内部的多模态结构和时空相关性,从而提高模型的预测能力;构建出租车需求数据的张量表示,并利用Tucker分解提取核心特征,使用季节性自回归移动平均模型进行预测.实验结果表明,与基准模型相比,本文方法具有较好的准确性和计算效率.

To enhance the accuracy and efficiency of taxi trip demand forecasting,a model combining Tucker decomposition and seasonal autoregressive moving average model was proposed.The spatiotemporal modeling of the core tensor after Tucker decomposition was carried out to better capture the internal multi-modal structure and spatiotemporal correla-tion of taxi travel demand,so as to improve the prediction ability of the model.The tensor representation of taxi demand data was constructed,the Tucker decomposition was used to extract core features,and the seasonal autoregressive integrated moving average model was used for forecasting.Experimental results show that the proposed method has better accuracy and computational efficiency compared with the baseline model.

楚本嘉;颜鸿宇;李建波

青岛大学计算机科学技术学院,青岛 266071青岛大学计算机科学技术学院,青岛 266071青岛大学计算机科学技术学院,青岛 266071

信息技术与安全科学

出行需求预测Tucker分解季节性自回归移动平均模型

travel demand forecastingtucker decompositionseasonal autoregressive inte-grated moving average model

《青岛大学学报(自然科学版)》 2025 (3)

50-56,7

国家自然科学基金联合基金重点项目(批准号:U22B2057)资助.

10.3969/j.issn.1006-1037.2025.03.08

评论