| 注册
首页|期刊导航|信息工程大学学报|分布式强化学习驱动的量子编译自动调优方法

分布式强化学习驱动的量子编译自动调优方法

刘毅 朱雨 许瑾晨 杜启明 连航 涂政

信息工程大学学报2025,Vol.26Issue(4):462-469,8.
信息工程大学学报2025,Vol.26Issue(4):462-469,8.DOI:10.3969/j.issn.1671-0673.XXXX.XX.001

分布式强化学习驱动的量子编译自动调优方法

A Distributed Reinforcement Learning Driven Approach to Automatic Tuning of Quantum Compilation

刘毅 1朱雨 1许瑾晨 1杜启明 1连航 1涂政1

作者信息

  • 1. 信息工程大学,河南 郑州 450001
  • 折叠

摘要

Abstract

Aiming at the problem of high overhead when applying reinforcement learning models to the field of automatic tuning of quantum compilation,a distributed reinforcement learning(DRL)driven au-tomatic tuning method for quantum compilation is proposed.By decoupling experience generation from agent training,parallel experience generation is achieved based on a distributed cluster.In this method,a markov decision process(MDP)model of quantum compilation is established with the char-acteristic of dense rewards,a decoupling mechanism for experience generation and agent trainingis is designed,and a dynamic experience loading strategy is combined to improve the training efficiency while ensuring the optimization effect.Experiments demonstrate a 54.6%reduction in training time compared to baseline methods.In terms of optimization performance,the agent performs better than the Qiskit-O3 compiler on 77.3%of the quantum circuits in the test set,and the number of quantum gates of the unseen Shor algorithm circuits is reduced by an average of 17.4%.

关键词

强化学习/分布式系统/深度Q网络/量子编译优化/量子编译自动调优

Key words

reinforcement learning/distributed system/deep Q-network/quantum compilation opti-mization/auto-tuning quantum compilation

分类

信息技术与安全科学

引用本文复制引用

刘毅,朱雨,许瑾晨,杜启明,连航,涂政..分布式强化学习驱动的量子编译自动调优方法[J].信息工程大学学报,2025,26(4):462-469,8.

信息工程大学学报

1671-0673

访问量0
|
下载量0
段落导航相关论文