| 注册
首页|期刊导航|烟草科技|基于高光谱图像和深度学习的烟叶叶脉分割及形态参数测量方法

基于高光谱图像和深度学习的烟叶叶脉分割及形态参数测量方法

汤红忠 范明登 高尚 陈亚双 杜薇 杨俊杰 徐大勇 堵劲松 张雷 罗登炎

烟草科技2025,Vol.58Issue(8):66-76,11.
烟草科技2025,Vol.58Issue(8):66-76,11.DOI:10.16135/j.issn1002-0861.2025.0015

基于高光谱图像和深度学习的烟叶叶脉分割及形态参数测量方法

A method for leaf vein segmentation and measurement of morphological parameters of tobacco leaves based on hyperspectral images and deep learning

汤红忠 1范明登 2高尚 1陈亚双 3杜薇 4杨俊杰 5徐大勇 6堵劲松 6张雷 7罗登炎8

作者信息

  • 1. 湘潭大学自动化与电子信息学院,湖南省湘潭市雨湖区羊牯塘27号 411105
  • 2. 福建省龙岩金叶复烤有限责任公司,福建省龙岩市永定区福三北路305-1号 364102
  • 3. 山东中烟工业有限责任公司,山东省青岛市崂山区株洲路137号 266100
  • 4. 四川中烟工业有限责任公司,成都市锦江区成龙大道一段56号 610066
  • 5. 江西中烟工业有限责任公司技术中心,南昌市高新区金圣工业科技园 330096
  • 6. 中国烟草总公司郑州烟草研究院,郑州高新技术产业开发区枫杨街2号 450001
  • 7. 郑州轻工业大学电气信息工程学院,郑州市东风路5号 450000
  • 8. 福建中烟工业有限责任公司技术中心,福建省厦门市滨水路298号 361021
  • 折叠

摘要

Abstract

To address the issues of low computational efficiency,significant manual errors,and limited batch processing capability in the analysis of tobacco vein morphology,a deep learning network based on hyperspectral images was developed and named Tobacco Vein U-Net(TVU-Net)for intelligent measurement of leaf morphological parameters.Principal Component Analysis(PCA)was employed to reduce the dimensionality of the hyperspectral images of tobacco leaves,extracting key feature wavelengths and decreasing data redundancy.The TVU-Net integrated Deformable Convolution(DC),Convolutional Block Attention Module(CBAM),and Atrous Spatial Pyramid Pooling(ASPP)modules to achieve fine-grained vein segmentation.The results showed that:1)Compared with SegNet,U-Net,U-Net++,TransUnet,and FR-UNet,the TVU-Net achieved the highest mean precision,accuracy,mean intersection over union(mIoU),and mDice coefficient.2)The TVU-Net produced less segmentation noise,preserved the overall vein structure more completely,and captured both the global information of the main vein and the local details of the secondary veins,thus enabling high-precision segmentation of the complex vein structure.3)On 50 randomly selected tobacco leaf samples,the mean absolute error in main vein length measurement was 2.67 cm,with an average relative error of 4.710%,indicating high measurement accuracy.This study provides a theoretical basis for the automated morphological analysis and parameter quantification of tobacco veins in industrial applications.

关键词

烟叶/高光谱图像/深度学习/叶脉分割/形态参数测量

Key words

Tobacco leaf/Hyperspectral image/Deep learning/Vein segmentation/Morphological parameter measurement

分类

轻工纺织

引用本文复制引用

汤红忠,范明登,高尚,陈亚双,杜薇,杨俊杰,徐大勇,堵劲松,张雷,罗登炎..基于高光谱图像和深度学习的烟叶叶脉分割及形态参数测量方法[J].烟草科技,2025,58(8):66-76,11.

基金项目

中国烟草总公司重点研发项目计划项目"梗签形成机制及大工艺协同控制技术研究与应用"(110202202010) (110202202010)

国家烟草专卖局标准项目专项"打叶烟叶 烟叶含梗率的测定 光谱成像法"(2024B007). (2024B007)

烟草科技

OA北大核心

1002-0861

访问量0
|
下载量0
段落导航相关论文