| 注册
首页|期刊导航|Aerospace Traffic and Safety|A surrogate modeling method for large-scale flow field prediction based on locally optimal shape parameters

A surrogate modeling method for large-scale flow field prediction based on locally optimal shape parameters

Chenlu Wang Junfeng Li Zeping Wu Jianhong Sun Shuaichao Ma Yi Zhao

Aerospace Traffic and Safety2025,Vol.2Issue(1):P.1-9,9.
Aerospace Traffic and Safety2025,Vol.2Issue(1):P.1-9,9.DOI:10.1016/j.aets.2025.03.001

A surrogate modeling method for large-scale flow field prediction based on locally optimal shape parameters

Chenlu Wang 1Junfeng Li 2Zeping Wu 2Jianhong Sun 3Shuaichao Ma 2Yi Zhao2

作者信息

  • 1. Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
  • 2. College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
  • 3. Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • 折叠

摘要

关键词

Flow field prediction/Enhanced radial basis function/Global and local surrogate

分类

数理科学

引用本文复制引用

Chenlu Wang,Junfeng Li,Zeping Wu,Jianhong Sun,Shuaichao Ma,Yi Zhao..A surrogate modeling method for large-scale flow field prediction based on locally optimal shape parameters[J].Aerospace Traffic and Safety,2025,2(1):P.1-9,9.

基金项目

supported by the science and technology innovation Program of Hunan Province(Grant No.2024RC3142) (Grant No.2024RC3142)

National Natural Science Foundation of China(Grant No.52375278). (Grant No.52375278)

Aerospace Traffic and Safety

2950-3388

访问量0
|
下载量0
段落导航相关论文