| 注册
首页|期刊导航|Natural Gas Industry B|Automatic detection and classification of drill bit damage using deep learning and computer vision algorithms

Automatic detection and classification of drill bit damage using deep learning and computer vision algorithms

Xiongwen Yang Xiao Feng Chris Cheng Jiaqing Yu Qing Zhang Zilong Gao Yang Liu Bo Chen

Natural Gas Industry B2025,Vol.12Issue(2):P.195-206,12.
Natural Gas Industry B2025,Vol.12Issue(2):P.195-206,12.DOI:10.1016/j.ngib.2025.03.004

Automatic detection and classification of drill bit damage using deep learning and computer vision algorithms

Xiongwen Yang 1Xiao Feng 2Chris Cheng 1Jiaqing Yu 1Qing Zhang 3Zilong Gao 3Yang Liu 3Bo Chen3

作者信息

  • 1. CNPC Houston Technology Research Center,Beijing,100028,China CNPC Engineering Technology R&D Company Limited,Beijing,102206,China National Engineering Research Center of Oil&Gas Drilling and Completion Technology,Beijing,102206,China
  • 2. CNPC Engineering Technology R&D Company Limited,Beijing,102206,China National Engineering Research Center of Oil&Gas Drilling and Completion Technology,Beijing,102206,China
  • 3. DataNova Analytics Incorporated,Houston,TX,77084,USA
  • 折叠

摘要

关键词

IADC dull/PDC bit/Artificial intelligence/Deep learning/Damage assessment/Data augmentation

分类

能源科技

引用本文复制引用

Xiongwen Yang,Xiao Feng,Chris Cheng,Jiaqing Yu,Qing Zhang,Zilong Gao,Yang Liu,Bo Chen..Automatic detection and classification of drill bit damage using deep learning and computer vision algorithms[J].Natural Gas Industry B,2025,12(2):P.195-206,12.

基金项目

support of the CNPC International Collaborative Research Project(No.2022DQ0410)。 (No.2022DQ0410)

Natural Gas Industry B

2352-8540

访问量0
|
下载量0
段落导航相关论文