| 注册
首页|期刊导航|电力系统及其自动化学报|考虑虚拟储能系统的建筑能源系统近端策略优化控制方法

考虑虚拟储能系统的建筑能源系统近端策略优化控制方法

庄重 段梅梅 黄艺璇 方凯杰 武泽清 徐延泽

电力系统及其自动化学报2025,Vol.37Issue(8):69-75,86,8.
电力系统及其自动化学报2025,Vol.37Issue(8):69-75,86,8.DOI:10.19635/j.cnki.csu-epsa.001624

考虑虚拟储能系统的建筑能源系统近端策略优化控制方法

Proximal Policy Optimization Control Method for Building Energy System Considering Virtual Energy Storage System

庄重 1段梅梅 1黄艺璇 1方凯杰 1武泽清 2徐延泽2

作者信息

  • 1. 国网江苏省电力有限公司营销服务中心,南京 210019
  • 2. 天津大学电气自动化与信息工程学院,天津 300072
  • 折叠

摘要

Abstract

Deep reinforcement learning(DRL)is an effective approach for realizing the optimal control of a building en-ergy system(BES).However,its practical applications face challenges such as a low convergence efficiency during model training and violations of room temperature constraints.To solve these problems,a proximal policy optimization(PPO)control method for BES which takes a virtual energy storage system(VESS)into account is proposed in this pa-per.First,based on the thermal inertia characteristics of the building envelope structure,a building VESS model is con-structed,and three VESS parameters including the virtual power,virtual capacity and virtual state-of-charge are formu-lated to quantify the BES-adjustable potential provided by thermal inertia.Second,the BES model with the consider-ation of a VESS is transformed into a Markov decision process,and the corresponding state variables,control actions,reward functions and transfer functions are set.Finally,the PPO algorithm is employed for the optimal control of BES.The calculation results of an example show that the proposed method effectively reduces the operating costs of BES and the proportion of room temperature violations while significantly increasing the generation speed of the optimal control strategy.

关键词

近端策略优化/马尔可夫决策过程/虚拟储能系统/建筑能源系统/优化控制

Key words

proximal policy optimization(PPO)/Markov decision process/virtual energy storage system(VESS)/building energy system(BES)/optimal control

分类

信息技术与安全科学

引用本文复制引用

庄重,段梅梅,黄艺璇,方凯杰,武泽清,徐延泽..考虑虚拟储能系统的建筑能源系统近端策略优化控制方法[J].电力系统及其自动化学报,2025,37(8):69-75,86,8.

基金项目

国网江苏省电力有限公司科技项目资助(J2023126). (J2023126)

电力系统及其自动化学报

OA北大核心

1003-8930

访问量0
|
下载量0
段落导航相关论文