| 注册
首页|期刊导航|火力与指挥控制|面向复杂场景的改进YOLOv8军事目标识别算法

面向复杂场景的改进YOLOv8军事目标识别算法

程国建 沈守婷 白俊卿

火力与指挥控制2025,Vol.50Issue(8):47-55,9.
火力与指挥控制2025,Vol.50Issue(8):47-55,9.DOI:10.3969/j.issn.1002-0640.2025.08.006

面向复杂场景的改进YOLOv8军事目标识别算法

An Improved Yolov8 Algorithm for Military Target Recognition in Complex Scenarios

程国建 1沈守婷 1白俊卿1

作者信息

  • 1. 西安石油大学计算机学院,西安 710000
  • 折叠

摘要

Abstract

To address the issues of high missed detection and false detection rates,as well as lower accuracy of military target recognition in complex battlefield environment,an LBI-YOLO military target recognition algorithm with improved YOLOv8 is proposed.The algorithm introduces a large-kernel selective attention mechanism to enhance the feature extraction capability of the backbone network,enabling the model to better focus on important areas;BiFPN is used for multi-scale feature fusion and Inner-IoU loss is use to replace traditional IoU to accelerate model convergence and improve recognition accuracy.Experimental results show that the improved algorithm increase the mAP value of recognition by 5.3%and FPS by 7.4%in the self-built military target dataset.

关键词

YOLOv8/大核选择性注意力机制/BiFPN/LBI-YOLO/Inner-IoU

Key words

YOLOv8/LSKA/BiFPN/LBI-YOLO/Inner-IoU

分类

信息技术与安全科学

引用本文复制引用

程国建,沈守婷,白俊卿..面向复杂场景的改进YOLOv8军事目标识别算法[J].火力与指挥控制,2025,50(8):47-55,9.

基金项目

陕西省自然科学基金基础研究计划(2023-JC-YB-601) (2023-JC-YB-601)

陕西省计算机学会&翔腾公司基金资助&西安市科技计划高校院所人才服务企业项目(23GXFW0077) (23GXFW0077)

火力与指挥控制

OA北大核心

1002-0640

访问量0
|
下载量0
段落导航相关论文