| 注册
首页|期刊导航|计算机与现代化|基于深度学习的中文实体关系联合抽取方法

基于深度学习的中文实体关系联合抽取方法

韦慧敏 周加可 文勇军 唐立军

计算机与现代化Issue(8):10-15,6.
计算机与现代化Issue(8):10-15,6.DOI:10.3969/j.issn.1006-2475.2025.08.002

基于深度学习的中文实体关系联合抽取方法

Chinese Entity Relation Joint Extraction Method Based on Deep Learning

韦慧敏 1周加可 1文勇军 1唐立军1

作者信息

  • 1. 长沙理工大学物理与电子科学学院,湖南 长沙 410114||长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室,湖南 长沙 410114
  • 折叠

摘要

Abstract

Entity-relationship extraction is an important part of artificial intelligence technologies such as building knowledge graphs and improving search engine efficiency.Due to the complexity,ambiguity,and implicit nature of Chinese text composi-tion,the process of Chinese entity relationship extraction is prone to entity overlapping,entity nesting,and information redun-dancy.Therefore,this paper proposes a deep learning-based joint extraction model of Chinese entity relations(SRGP).The model firstly encodes the input text,obtains the set of specific relations through the specific relation prediction network,fuses the set of specific relations with the input text into the entity recognition module through the attention mechanism,and reduces the redundant computation in the extraction of Chinese entity relations.For the problems of insufficient extraction of overlapping entities and inaccurate recognition of nested entities,the global pointer annotation strategy based on specific relations is pro-posed by utilizing the idea of global normalization under the constraints of a specific set of relations.Two general Chinese datas-ets,DUIE1.0 and CMeIE,are selected respectively,and this paper's model,SRGP,is compared with the typical models of entity-relationship joint extraction,such as CopyRE,PRGC,and CasRel,for the comparison experiments,and the experimen-tal results show that this paper's model achieves F1 values of 61.3%and 80.1%on the two datasets,which are respectively 1.5 and 2.2 percentage points higher than those of the best-performing baseline models CasRel and PRGC.

关键词

实体关系抽取/深度学习/特定关系预测/冗余计算/全局指针标注策略

Key words

entity relationship extraction/deep learning/relationship-specific forecasting/redundant computing/global pointer labeling policy

分类

信息技术与安全科学

引用本文复制引用

韦慧敏,周加可,文勇军,唐立军..基于深度学习的中文实体关系联合抽取方法[J].计算机与现代化,2025,(8):10-15,6.

计算机与现代化

1006-2475

访问量0
|
下载量0
段落导航相关论文