| 注册
首页|期刊导航|计算机与现代化|基于联邦学习的数据隐私保护方案

基于联邦学习的数据隐私保护方案

程钰雯 景义君 时自成 荆长强 郭锋 武传坤

计算机与现代化Issue(8):63-69,88,8.
计算机与现代化Issue(8):63-69,88,8.DOI:10.3969/j.issn.1006-2475.2025.08.009

基于联邦学习的数据隐私保护方案

A Data Privacy Protection Scheme Based on Federated Learning

程钰雯 1景义君 1时自成 1荆长强 1郭锋 1武传坤1

作者信息

  • 1. 临沂大学信息科学与工程学院,山东 临沂 276000
  • 折叠

摘要

Abstract

The current healthcare data domain faces the issue of data silos,which restricts the flow and sharing of data among dif-ferent institutions and hinders cross-institutional treatment for patients.To address this problem,this paper proposes a privacy protection scheme based on federated learning(Federated Learning with Schnorr Zero-knowledge Based Identity Authentication and Differential Privacy Protection,FL-SZIDP).Firstly,a data-sharing framework based on federated learning is established.Secondly,to defend against adversaries attempting to steal original data through reverse attacks,differential privacy noise is added to the model parameters uploaded by each participant.To prevent malicious participants from joining the federated learn-ing process,identity authentication based on Schnorr zero-knowledge proof is performed,ensuring the credibility of the partici-pants'identities.Finally,the effectiveness of the proposed algorithm is verified using the MNIST data set.The experimental re-sults show that the scheme FL-SZIDP ensures accuracy while protecting privacy.

关键词

联邦学习/隐私保护/差分隐私/数据安全

Key words

federal learning/privacy protection/differential privacy/data security

分类

信息技术与安全科学

引用本文复制引用

程钰雯,景义君,时自成,荆长强,郭锋,武传坤..基于联邦学习的数据隐私保护方案[J].计算机与现代化,2025,(8):63-69,88,8.

基金项目

国家自然科学基金青年基金资助项目(61901206) (61901206)

计算机与现代化

1006-2475

访问量2
|
下载量0
段落导航相关论文