| 注册
首页|期刊导航|煤矿安全|露天矿无人矿车道路障碍端到端多目标检测研究

露天矿无人矿车道路障碍端到端多目标检测研究

崔智翔 江松 毛晶 孔若男 王靖

煤矿安全2025,Vol.56Issue(9):16-24,9.
煤矿安全2025,Vol.56Issue(9):16-24,9.DOI:10.13347/j.cnki.mkaq.20250752

露天矿无人矿车道路障碍端到端多目标检测研究

Research on end-to-end multi-target detection of unmanned mine car road obstacles in open-pit mines

崔智翔 1江松 2毛晶 3孔若男 4王靖5

作者信息

  • 1. 西安建筑科技大学 资源工程学院,陕西 西安 710055||中国矿业大学 煤炭精细勘探与智能开发全国重点实验室,江苏 徐州 221116
  • 2. 西安建筑科技大学 资源工程学院,陕西 西安 710055||中国矿业大学 煤炭精细勘探与智能开发全国重点实验室,江苏 徐州 221116||金属矿山安全与健康国家重点实验室,安徽 马鞍山 243000
  • 3. 西安优迈智慧矿山科技有限公司,陕西 西安 710075
  • 4. 深圳市中金岭南有色金属股份有限公司,广东 深圳 512325
  • 5. 中钢集团马鞍山矿山研究总院股份有限公司,安徽 马鞍山 243000
  • 折叠

摘要

Abstract

Mining engineering is rapidly developing towards automation and intelligence,and the construction of intelligent mines has become a future trend.The multi-objective environmental perception of unmanned mine cars in open-pit mine areas is a key step in unmanned transportation.For the safety risks caused by multiple obstacles such as rolling pits,puddles,vehicles and personnel in complex unstructured roads,the existing end-to-end algorithms face the challenges of small target information loss,insufficient multi-scale feature fusion,unbalanced samples,and difficulty in balancing model complexity and accuracy in the dynamic and complex en-vironment of open-pit mines.To this end,an end-to-end multi-target detection model You Only Look Once-Mine Multi-target Detec-tion(YOLO-MMD)for unmanned mine trucks in open-pit mines is proposed.For the problem of missing observation pixel informa-tion caused by unstructured terrain in open-pit mines,Space-to-Depth Convolution(SPD-Conv)is introduced to transform image spatial information into depth information,which effectively preserves the fine-grained perception ability of small targets in unstruc-tured scenes and improves computational efficiency.In order to improve the effective use of context information,Efficient Multi-Scale Attention(EMA)is embedded in the detection layer to realize pixel-level cross-channel interaction and spatial information ag-gregation,which enhances the ability of multi-scale feature fusion without significantly increasing the computational burden.In addi-tion,considering the sample imbalance problem of different obstacle target objects in open-pit mines,the In-Focaler-IoU loss func-tion is designed to improve the efficiency and convergence speed of bounding box regression with auxiliary bounding box while pay-ing attention to rare target samples.The study show that YOLO-MMD can detect multi-target objects under the conditions of occlu-sion and blurring,and achieve the best balance between multi-target detection accuracy and complexity.It can achieve 0.939 mAP,4.56 MB model size and 5.8 G floating-point operations per second,which can provide effective and feasible environmental percep-tion for the safe driving of unmanned mine cars.

关键词

矿山无人驾驶/多目标检测/YOLO/矿山计算机视觉/环境感知

Key words

mine unmanned driving/multi-target detection/YOLO/mine computer vision/environmental perception

分类

矿业与冶金

引用本文复制引用

崔智翔,江松,毛晶,孔若男,王靖..露天矿无人矿车道路障碍端到端多目标检测研究[J].煤矿安全,2025,56(9):16-24,9.

基金项目

国家自然科学基金面上资助项目(52374136) (52374136)

中国矿业大学煤炭精细勘探与智能开发全国重点实验室开放研究课题资助项目(SKLCRSM23KFO1C) (SKLCRSM23KFO1C)

煤矿安全

OA北大核心

1003-496X

访问量0
|
下载量0
段落导航相关论文