| 注册
首页|期刊导航|四川轻化工大学学报(自然科学版)|基于多模态融合的3D目标检测技术研究

基于多模态融合的3D目标检测技术研究

曾恒 姚娅川

四川轻化工大学学报(自然科学版)2025,Vol.38Issue(4):48-57,10.
四川轻化工大学学报(自然科学版)2025,Vol.38Issue(4):48-57,10.DOI:10.11863/j.suse.2025.04.06

基于多模态融合的3D目标检测技术研究

Research on 3D Object Detection Technology Based on Multimodal Fusion

曾恒 1姚娅川2

作者信息

  • 1. 四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||智能感知与控制四川省重点实验室,四川 宜宾 644000
  • 2. 四川轻化工大学物理与电子工程学院,四川 宜宾 644000||智能感知与控制四川省重点实验室,四川 宜宾 644000
  • 折叠

摘要

Abstract

Aiming at the problem of missed detection of long-distance targets in the field of autonomous driving,an improved 3D target detection model based on CenterFusion is proposed,which combines camera and millimeter wave radar data.First of all,the early fusion strategy is introduced to map the radar data to the image plane and combine it with the image data to form multi-channel input to enhance the anti-jamming ability of the network model.Secondly,after the feature fusion network,the attention mechanism is introduced to make the model focus on the key information extraction of the fusion feature map,which effectively improves the accuracy of 3D target detection.Then,the loss function is further improved to solve the problem of imbalance between positive and negative samples.Finally,the proposed model is used to carry out comparative experiments and ablation experiments on nuScenes data sets,and the results show that the average detection accuracy of the improved model is 1.5%higher than that of the traditional CenterFusion model,and the NuScenes detection score of the improved model is 2.1%higher,effectively improving the detection ability of long-distance targets.

关键词

自动驾驶/传感器融合/3D目标检测/早期融合/注意力机制

Key words

autonomous driving/sensor fusion/3D target detection/early fusion/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

曾恒,姚娅川..基于多模态融合的3D目标检测技术研究[J].四川轻化工大学学报(自然科学版),2025,38(4):48-57,10.

基金项目

四川省科技厅重大专题项目(2018GZDZX0045) (2018GZDZX0045)

四川轻化工大学学报(自然科学版)

2096-7543

访问量0
|
下载量0
段落导航相关论文