| 注册
首页|期刊导航|四川轻化工大学学报(自然科学版)|融合伪标签与一致性正则化的半监督医学图像分割研究

融合伪标签与一致性正则化的半监督医学图像分割研究

缪益民 曹立佳 汪毅

四川轻化工大学学报(自然科学版)2025,Vol.38Issue(4):58-67,10.
四川轻化工大学学报(自然科学版)2025,Vol.38Issue(4):58-67,10.DOI:10.11863/j.suse.2025.04.07

融合伪标签与一致性正则化的半监督医学图像分割研究

Research on Semi-supervised Medical Image Segmentation for Pseudo-label and Consistency Regularization

缪益民 1曹立佳 2汪毅3

作者信息

  • 1. 四川轻化工大学计算机科学与工程学院,四川 宜宾 644000
  • 2. 四川轻化工大学自动化与信息工程学院,四川 宜宾 644000||智能感知与控制四川省重点实验室,四川 宜宾 644000
  • 3. 自贡市第四人民医院,四川 自贡 643000
  • 折叠

摘要

Abstract

Medical image segmentation is essential for disease diagnosis,whose performances are dependent on the high quality of the labeling data.However,medical image labeling data is scarce and expensive,which severely constrains the training effectiveness of deep learning models.Semi-supervised medical image segmentation can reduce the dependence on labeled data,but the poor quality of pseudo-labels will introduce noise,causing the model to converge to the suboptimal solution.In this paper,a semi-supervised medical image segmentation method is proposed,which obviously improves the segmentation performance by combining reliable pseudo-labels and consistent regularization strategies.Specifically,a decoder framework for mutual learning is designed,the method of filtering unreliable pseudo-labels by threshold value is discarded,and the two decoders are contrasted to obtain more reliable pseudo-labels,thereby improving the quality of pseudo-labels.Moreover,a two-branch strong perturbation module is introduced to make two different strong perturbation branches learn from each other to explore the disturbance space of image level more fully.Experimental verification is conducted on the ACDC dataset,and the results show that when only 10%of the labeled data is used in the proposed method,the Dice coefficient is increased by 30.70 percentage points,the 95HD and ASD are reduced by 38.90 and 14.22,respectively,and the segmentation performance is significantly improved,which verifies the effectiveness and superiority of the proposed method.

关键词

半监督学习/医学图像分割/伪标签/一致性正则化

Key words

semi-supervised learning/medical image segmentation/pseudo-label/consistency regularization

分类

信息技术与安全科学

引用本文复制引用

缪益民,曹立佳,汪毅..融合伪标签与一致性正则化的半监督医学图像分割研究[J].四川轻化工大学学报(自然科学版),2025,38(4):58-67,10.

基金项目

中国高校产学研创新基金项目(2021ZYA11002) (2021ZYA11002)

四川省科技计划项目(2024NSFSC2048) (2024NSFSC2048)

企业信息化与物联网测控技术四川省高校重点实验室开放基金项目(2023WYY01) (2023WYY01)

四川轻化工大学科研创新团队计划项目(SUSE652A011) (SUSE652A011)

四川轻化工大学研究生创新基金项目(Y2023110) (Y2023110)

四川轻化工大学学报(自然科学版)

2096-7543

访问量0
|
下载量0
段落导航相关论文