| 注册
首页|期刊导航|铁路物流|基于EfficientDet-YOLOv7的钢轨损伤检测算法

基于EfficientDet-YOLOv7的钢轨损伤检测算法

闫龙 袁花明 汤超

铁路物流2025,Vol.43Issue(8):62-67,6.
铁路物流2025,Vol.43Issue(8):62-67,6.DOI:10.16669/j.cnki.issn.2097-5899.202411140003

基于EfficientDet-YOLOv7的钢轨损伤检测算法

Rail Damage Detection Algorithm Based on EfficientDet-YOLOv7

闫龙 1袁花明 1汤超2

作者信息

  • 1. 陕西靖神铁路有限责任公司,陕西 榆林 719000
  • 2. 北京全路通信信号研究设计院集团有限公司运输指挥与信息技术研究院,北京 100000
  • 折叠

摘要

Abstract

This paper proposed a rail damage detection method based on an improved EfficientDet and YOLOv7 algorithm to address the issues of low efficiency and insufficient accuracy in traditional manual inspections.The method combined EfficientNet with the bi-directional feature pyramid network(BiFPN),significantly enhancing the processing ability of multi-scale features.Additionally,deeper convolutional layers were introduced to strengthen feature extraction capabilities.Using high-definition cameras and lighting compensation devices to capture images of the rail surface,the convolutional neural network processed and analyzed the images to achieve rapid and accurate rail damage detection.Experimental results show that,compared to YOLOv7,YOLOv5,and YOLOv3,the EfficientDet-YOLOv7 algorithm improves the mean average precision(mAP),precision,and recall by 9.27%,8.50%,and 9.20%,respectively,while also offering higher computational efficiency and faster convergence speed.

关键词

钢轨损伤检测/图像采集/YOLOv7/EfficientDet/多尺度特征处理

Key words

Rail Damage Detection/Image Capture/YOLOv7/EfficientDet/Multi-scale Feature Processing

分类

交通工程

引用本文复制引用

闫龙,袁花明,汤超..基于EfficientDet-YOLOv7的钢轨损伤检测算法[J].铁路物流,2025,43(8):62-67,6.

铁路物流

1004-2024

访问量0
|
下载量0
段落导航相关论文