| 注册
首页|期刊导航|信息与控制|基于深度强化学习的海上搜救覆盖路径规划算法应用

基于深度强化学习的海上搜救覆盖路径规划算法应用

韩靖童 余倩 刘源

信息与控制2025,Vol.54Issue(4):545-555,11.
信息与控制2025,Vol.54Issue(4):545-555,11.DOI:10.13976/j.cnki.xk.2024.2122

基于深度强化学习的海上搜救覆盖路径规划算法应用

Application of Deep Reinforcement Learning-based Maritime Search and Rescue Coverage Path Planning Algorithm

韩靖童 1余倩 1刘源2

作者信息

  • 1. 上海理工大学健康科学与工程学院,上海 200093||海军军医大学卫生勤务学系,上海 200433
  • 2. 海军军医大学卫生勤务学系,上海 200433
  • 折叠

摘要

Abstract

Given that current maritime search and rescue(SAR)decision support systems still rely on traditional fixed search patterns,which are inefficient and lack adaptability,we propose a maritime SAR coverage path planning model based on deep reinforcement learning.First,we formulate the maritime SAR coverage path planning problem as a Markov decision process.Then,by integrating a double deep Q-network(DDQN),prioritized DDQN,distributional DQN,and noisy DQN,we design a coverage path planning algorithm tailored for a single rescue vessel.Finally,we validate the feasibility and effectiveness of the proposed algorithm through simulation experiments.Compar-ison results demonstrate that the proposed algorithm substantially outperforms existing methods in path planning quality and search efficiency.

关键词

海上搜救/深度强化学习/覆盖路径规划

Key words

maritime search and rescue/deep reinforcement learning/coverage path planning

分类

信息技术与安全科学

引用本文复制引用

韩靖童,余倩,刘源..基于深度强化学习的海上搜救覆盖路径规划算法应用[J].信息与控制,2025,54(4):545-555,11.

基金项目

军队后勤科研重大项目(AHJ22C003) (AHJ22C003)

信息与控制

OA北大核心

1002-0411

访问量0
|
下载量0
段落导航相关论文