| 注册
首页|期刊导航|信息与控制|基于扩展补丁对的弱监督语义分割网络

基于扩展补丁对的弱监督语义分割网络

孙铭辰 葛洪伟 李婷

信息与控制2025,Vol.54Issue(4):595-606,12.
信息与控制2025,Vol.54Issue(4):595-606,12.DOI:10.13976/j.cnki.xk.2024.0971

基于扩展补丁对的弱监督语义分割网络

Weakly Supervised Semantic Segmentation Network Based on Extended Patch Pairs

孙铭辰 1葛洪伟 1李婷1

作者信息

  • 1. 康养智能化技术教育部工程研究中心(江南大学),江苏无锡 214122||江南大学人工智能与计算机学院,江苏无锡 214122
  • 折叠

摘要

Abstract

In weakly supervised semantic segmentation,class activation maps(CAMs)often suffer from poor correlation with object seeds and incomplete area coverage on targets.To address these de-fects,we introduce a weakly supervised semantic segmentation network based on extended patch pairs.First,we propose the concept of extended patch pairs and demonstrate,through information theory,that the total self-information of CAMs obtained from extended patch pairs exceeds that of standard CAMs,thus achieving a higher correlation with object seeds.Second,we introduce a higher-lower feature self-attention combination module that enhances low-level features and CAMs through self-attention mechanisms and combines them to refine CAMs pixel by pixel.Finally,we design a triple network architecture that takes the original image and its extended patch pairs as network inputs.By narrowing the gap between the CAM of the original image and that of the extended patch pair,the network achieves higher segmentation accuracy.Experimental evaluations on the Pascal VOC 2012 validation and test sets yielded mean intersection over union(mIoU)scores of 72.1%and 73.0%,respectively.The experimental results show that the performance of this network outperforms current mainstream image-level weakly supervised semantic segmentation methods.

关键词

弱监督学习/图像语义分割/类激活图/图像级标签/自注意力

Key words

weakly supervised learning/image semantic segmentation/class activation map/image-level label/self-attention

分类

信息技术与安全科学

引用本文复制引用

孙铭辰,葛洪伟,李婷..基于扩展补丁对的弱监督语义分割网络[J].信息与控制,2025,54(4):595-606,12.

基金项目

国家自然科学基金项目(61806006) (61806006)

高等学校学科创新引智计划项目(B12018) (B12018)

信息与控制

OA北大核心

1002-0411

访问量0
|
下载量0
段落导航相关论文