| 注册
首页|期刊导航|信息与控制|垃圾协同处置下基于ELM的MISO Hammerstein-Wiener分解炉温度预测控制

垃圾协同处置下基于ELM的MISO Hammerstein-Wiener分解炉温度预测控制

李鑫 刘海军 陈薇 康志伟 解俊哲 赵军 褚彪

信息与控制2025,Vol.54Issue(4):607-618,12.
信息与控制2025,Vol.54Issue(4):607-618,12.DOI:10.13976/j.cnki.xk.2024.1842

垃圾协同处置下基于ELM的MISO Hammerstein-Wiener分解炉温度预测控制

ELM Based Temperature Prediction Control for MISO Hammerstein-Wiener Decomposition Furnace under Collaborative Garbage Disposal

李鑫 1刘海军 1陈薇 1康志伟 1解俊哲 1赵军 1褚彪2

作者信息

  • 1. 合肥工业大学电气与自动化工程学院,安徽 合肥 230009||安徽省工业自动化工程技术研究中心,安徽 合肥 230009
  • 2. 合肥水泥研究设计院有限公司,安徽 合肥 230051
  • 折叠

摘要

Abstract

To address the limitation that traditional linear models are insufficient to describe the complex system of the decomposition furnace,in collaborative garbage disposal,we propose a multiple-in-put single-output(MISO)Hammerstein-Wiener model for decomposition furnace temperature mod-eling and predictive control based on an extreme learning machine(ELM).This approach aims to achieve stable temperature control of the decomposition furnace.The model uses coal feeding rate and refuse-derived fuel(RDF)as inputs,decomposition furnace temperature as the output,and applies ELM to capturing nonlinear relationships while employing an autoregressive moving average with exogenous input(ARMAX)model to describe dynamic linear relationships.We identify the mixed parameters of the model using the recursive least squares method and estimate the model pa-rameters through singular value decomposition.The control method for the decomposition furnace follows a two-step predictive control approach.First,we establish a nonlinear inverse model.Then,we map these intermediate variables through a nonlinear process to determine the control variables of the model.Simulation experiments demonstrate that incorporating ELM improves the fitting accuracy of the model.The proposed approach exhibits greater stability and improved track-ing performance compared to traditional predictive control methods.

关键词

垃圾协同处置/分解炉温度/Hammerstein-Wiener模型/两步法预测控制/极限学习机

Key words

collaborative garbage disposal/decomposition furnace tem-perature/Hammerstein-Wiener model/two-step predictive control/extreme learning machine

分类

信息技术与安全科学

引用本文复制引用

李鑫,刘海军,陈薇,康志伟,解俊哲,赵军,褚彪..垃圾协同处置下基于ELM的MISO Hammerstein-Wiener分解炉温度预测控制[J].信息与控制,2025,54(4):607-618,12.

基金项目

安徽省重点研发计划项目(202104a05020054) (202104a05020054)

信息与控制

OA北大核心

1002-0411

访问量0
|
下载量0
段落导航相关论文