| 注册
首页|期刊导航|燕山大学学报|基于多原型交叉感知网络的小样本图像语义分割

基于多原型交叉感知网络的小样本图像语义分割

巴钧才 王昌龙

燕山大学学报2025,Vol.49Issue(4):300-308,9.
燕山大学学报2025,Vol.49Issue(4):300-308,9.DOI:10.3969/j.issn.1007-791X.2025.04.003

基于多原型交叉感知网络的小样本图像语义分割

Few-shot image semantic segmentation based on multi-prototype cross-perception network

巴钧才 1王昌龙2

作者信息

  • 1. 兰州石化职业技术大学 信息工程学院,甘肃 兰州 730087
  • 2. 西北师范大学 计算机科学与工程学院,甘肃 兰州 730070
  • 折叠

摘要

Abstract

The information of support images alone is insufficient to provide sufficient guidance for segmenting unseen objects in the query image.To address this issue,a novel method for few-shot semantic segmentation based on the multi-prototype cross-perception network is proposed.Firstly,a set of shared weights backbone networks are used to map both support and query images into a deep feature space.In the support branch,the support feature map is decomposed into foreground and background feature maps using the ground true mask of the support image.Then,multiple prototype expressions are generated on the support foreground feature map using mask average pooling,and K-nearest neighbor clustering algorithm is used to generate multiple prototypes on the support background and query feature maps.Finally,the alignment of the two-branch prototype sets is achieved through cross-attention mechanisms,enhancing the perceptual ability of the prototype sets for the target task.Experimental results on the PASCAL-5 and COCO-20 datasets demonstrate that the proposed method achieves competitive segmentation performance on 1-shot and 5-shot tasks.

关键词

小样本语义分割/交叉注意力机制/多原型/掩码平均池化/K近邻聚类算法

Key words

few-shot semantic segmentation/cross-attention mechanism/multi-prototype/mask average pooling/K-nearest neighbor clustering algorithm

分类

信息技术与安全科学

引用本文复制引用

巴钧才,王昌龙..基于多原型交叉感知网络的小样本图像语义分割[J].燕山大学学报,2025,49(4):300-308,9.

基金项目

国家自然科学基金资助项目(62362060),甘肃省教育厅创新基金项目(2022A-219) (62362060)

燕山大学学报

OA北大核心

1007-791X

访问量0
|
下载量0
段落导航相关论文