| 注册
首页|期刊导航|燕山大学学报|基于GNN因果推断的结构增强漏洞检测模型

基于GNN因果推断的结构增强漏洞检测模型

司文 赵富成 李硕 杨帅林 任家东

燕山大学学报2025,Vol.49Issue(4):309-318,10.
燕山大学学报2025,Vol.49Issue(4):309-318,10.DOI:10.3969/j.issn.1007-791X.2025.04.004

基于GNN因果推断的结构增强漏洞检测模型

Structure enhanced vulnerability detection model based on GNN causal inference

司文 1赵富成 2李硕 2杨帅林 2任家东3

作者信息

  • 1. 燕山大学 艺术与设计学院,河北 秦皇岛 066004
  • 2. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004
  • 3. 燕山大学 信息科学与工程学院,河北 秦皇岛 066004||燕山大学 河北省软件工程重点实验室,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

To solve the problem that existing vulnerability detection methods extract graph structure features using simple graph neural network models and directly generalize information labels and graph structures out of distribution,leading to low detection efficiency.a structure-enhanced vulnerability detection model based on graph neural network causal inference,called SEVDM-GCI,is proposed.The model treats source code as a linear token sequence.First,it constructs a graph structure based on word co-occurrence relationships.Then,it divides the graph into a causal graph and a confounding graph through the residual connections of the graph neural network.Variables are strategically confounded to simulate the causal relationship between causal variables and labels.Finally,node embedding is performed on the causal and confounding graphs to enhance the graph's structural features.SEVDM-GCI is verified on a real benchmark dataset from CodeXGLUE,and the detection results show improvements of 3.15%,3.77%,and 2.57%in accuracy,precision,and F1 score,respectively,compared with the optimal baseline method.The performance of vulnerability detection is significantly improved.

关键词

深度学习/图神经网络/因果推断/结构增强/漏洞检测

Key words

deep learning/graph neural networks/causal inference/structural reinforcement/vulnerability detection

分类

信息技术与安全科学

引用本文复制引用

司文,赵富成,李硕,杨帅林,任家东..基于GNN因果推断的结构增强漏洞检测模型[J].燕山大学学报,2025,49(4):309-318,10.

基金项目

国家自然科学基金资助项目(62376240) (62376240)

河北省自然科学基金资助项目(F2022203026,F2022203089) (F2022203026,F2022203089)

燕山大学学报

OA北大核心

1007-791X

访问量0
|
下载量0
段落导航相关论文