| 注册
首页|期刊导航|中国电机工程学会电力与能源系统学报(英文版)|Ex-ante and Ex-post Decomposition Strategy for Ultra-short-term Wind Power Prediction

Ex-ante and Ex-post Decomposition Strategy for Ultra-short-term Wind Power Prediction

Peng Lu Zhuo Li Lin Ye Ming Pei Yingying Zheng Yongning Zhao

中国电机工程学会电力与能源系统学报(英文版)2025,Vol.11Issue(4):1454-1465,12.
中国电机工程学会电力与能源系统学报(英文版)2025,Vol.11Issue(4):1454-1465,12.DOI:10.17775/CSEEJPES.2022.07000

Ex-ante and Ex-post Decomposition Strategy for Ultra-short-term Wind Power Prediction

Ex-ante and Ex-post Decomposition Strategy for Ultra-short-term Wind Power Prediction

Peng Lu 1Zhuo Li 1Lin Ye 1Ming Pei 1Yingying Zheng 1Yongning Zhao1

作者信息

  • 1. Department of College of Information and Electrical Engineering,China Agricultural University,Beijing 1000843,China
  • 折叠

摘要

关键词

Data pre-processing/error correction/reservoir neural network/wind power prediction

Key words

Data pre-processing/error correction/reservoir neural network/wind power prediction

引用本文复制引用

Peng Lu,Zhuo Li,Lin Ye,Ming Pei,Yingying Zheng,Yongning Zhao..Ex-ante and Ex-post Decomposition Strategy for Ultra-short-term Wind Power Prediction[J].中国电机工程学会电力与能源系统学报(英文版),2025,11(4):1454-1465,12.

基金项目

This work is supported by the National Key R&D Program of China(2022YFB2403000). (2022YFB2403000)

中国电机工程学会电力与能源系统学报(英文版)

2096-0042

访问量0
|
下载量0
段落导航相关论文