| 注册
首页|期刊导航|Artificial Intelligence in Geosciences|Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO

Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO

Mohanad Diab Polychronis Kolokoussis Maria Antonia Brovelli

Artificial Intelligence in Geosciences2025,Vol.6Issue(1):P.14-24,11.
Artificial Intelligence in Geosciences2025,Vol.6Issue(1):P.14-24,11.DOI:10.1016/j.aiig.2025.100105

Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO

Mohanad Diab 1Polychronis Kolokoussis 2Maria Antonia Brovelli1

作者信息

  • 1. Department of Civil and Environmental Engineering,Politecnico di Milano,Milano,20133,Italy
  • 2. School of Rural,Surveying and Geoinformatics Engineering,National Technical University of Athens,Athens,15780,Greece
  • 折叠

摘要

关键词

Foundation models/Multi-modal models/Vision language models/Semantic segmentation/Segment anything model/Earth observation/Remote sensing

分类

信息技术与安全科学

引用本文复制引用

Mohanad Diab,Polychronis Kolokoussis,Maria Antonia Brovelli..Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO[J].Artificial Intelligence in Geosciences,2025,6(1):P.14-24,11.

Artificial Intelligence in Geosciences

2666-5441

访问量0
|
下载量0
段落导航相关论文