| 注册
首页|期刊导航|广东电力|基于VIP-MIC-SBS变量筛选的火电厂烟气流量软测量研究

基于VIP-MIC-SBS变量筛选的火电厂烟气流量软测量研究

邹祥波 熊凯 陈公达 刘泽明 陈创庭 卢志民 卢伟业 陈小玄 姚顺春

广东电力2025,Vol.38Issue(8):1-11,11.
广东电力2025,Vol.38Issue(8):1-11,11.DOI:10.3969/j.issn.1007-290X.2025.08.001

基于VIP-MIC-SBS变量筛选的火电厂烟气流量软测量研究

Research on Soft Measurement of Flue Gas Flow in Thermal Power Plants Based on VIP-MIC-SBS Hybrid Variable Selection

邹祥波 1熊凯 2陈公达 3刘泽明 4陈创庭 3卢志民 4卢伟业 5陈小玄 6姚顺春4

作者信息

  • 1. 广东能源集团科学技术研究院有限公司,广东 广州 510630||广东省能源集团有限公司,广东 广州 510730
  • 2. 广东省能源集团有限公司,广东 广州 510730
  • 3. 广东能源集团科学技术研究院有限公司,广东 广州 510630
  • 4. 华南理工大学 电力学院,广东 广州 510641||广东省能源高效清洁利用重点实验室,广东 广州 510641
  • 5. 广东省特种设备检测研究院顺德检测院,广东 佛山 528300
  • 6. 华南理工大学 电力学院,广东 广州 510641||广东省能源高效清洁利用重点实验室,广东 广州 510641||广东省特种设备检测研究院顺德检测院,广东 佛山 528300
  • 折叠

摘要

Abstract

The continuous emission monitoring system(CEMS),as an efficient and traceable approach,is gradually being applied in China's carbon measurement field.However,accurately monitoring flue gas flow is challenging due to monitoring data interruption and abnormality caused by the large diameter of chimneys,the complex flow fields,and issues such as maintenance of flowmeters and dust blockage.To address these challenges,this study proposes a soft measurement model for flue gas flow based on support vector machine(SVM),incorporating a hybrid variable selection strategy that integrates variable importance in projection(VIP),the maximal information coefficient(MIC)and sequential backward selection(SBS)algorithms.Based on the operating data from an F-class gas-steam combined cycle power generation unit,this study uses the VIP values to evaluate the significance of auxiliary variables,as well as combines MIC and SBS for redundancy elimination and variable set optimization.Thereby,the proposed approach enhances the prediction accuracy and generalization capability of the soft measurement model.The experimental results show that the SVM model outperforms the long short-term memory(LSTM)model and exhibits better generalization ability compared to the BP neural network.The model performance is the best with 12 selected auxiliary variables,and the root mean square error(RMSE)and mean absolute percentage error(MAPE)on the test set are lower,verifying the effectiveness of the variable selection method.Furthermore,under both steady and transient operating conditions,the proposed model maintains an average MAPE below 0.7%and exhibits a filtering effect on the predicted signals.

关键词

烟气流量/软测量技术/变量投影重要性分析/最大信息系数/后向搜索/支持向量机

Key words

flue gas flow/soft measurement technology/variable importance in projection(VIP)/maximal information coefficient(MIC)/sequential backward selection(SBS)/support vector machine(SVM)

分类

信息技术与安全科学

引用本文复制引用

邹祥波,熊凯,陈公达,刘泽明,陈创庭,卢志民,卢伟业,陈小玄,姚顺春..基于VIP-MIC-SBS变量筛选的火电厂烟气流量软测量研究[J].广东电力,2025,38(8):1-11,11.

基金项目

国家重点研发计划项目(2021YFF0601001) (2021YFF0601001)

广东省能源集团有限公司科技项目(GEG/AJS-22-002) (GEG/AJS-22-002)

广东电力

OA北大核心

1007-290X

访问量0
|
下载量0
段落导航相关论文