| 注册
首页|期刊导航|农业机械学报|基于点云的生猪体尺参数自动提取方法

基于点云的生猪体尺参数自动提取方法

黄霞 余松科 刘兴明 张博 朱锋博

农业机械学报2025,Vol.56Issue(8):496-506,11.
农业机械学报2025,Vol.56Issue(8):496-506,11.DOI:10.6041/j.issn.1000-1298.2025.08.047

基于点云的生猪体尺参数自动提取方法

Automatic Extraction of Pig Body Size Parameters Based on Point Cloud

黄霞 1余松科 2刘兴明 3张博 1朱锋博4

作者信息

  • 1. 成都工业学院电子工程学院,成都 611730||成都工业学院特种机器人应用技术研究院,成都 611730
  • 2. 成都工业学院电子工程学院,成都 611730
  • 3. 辽宁省冶金地质勘查研究院有限责任公司,鞍山 114001
  • 4. 信息工程大学地理空间信息学院,郑州 450001
  • 折叠

摘要

Abstract

The body dimension parameters of livestock play a crucial role in various fields such as animal selection breeding,health monitoring,and genetic studies of performance.The automatic measurement of these parameters represents an important research direction in digital agriculture.Relied on a dual-depth camera measurement system to collect point cloud data of live pigs and aimed to develop an algorithm capable of automatically identifying and extracting pig feature points,feature surfaces,and body dimension parameters.Given that pig point cloud data often contain significant noise issues,a filtering algorithm with multiple filters stacked was innovatively proposed,in contrast to traditional single-filter methods.To achieve automatic detection of pig feature points and surfaces,an algorithm for automatically extracting feature points was proposed based on the convexity and concavity of side and top-view contour lines,and an algorithm for automatically extracting feature surfaces based on the trend of trunk cross-sectional area changes,differing from approaches that calculated feature points from a single perspective.Addressing the limitations of existing body dimension parameters in terms of variety and fitting accuracy,totally 17 body dimension parameters and 12 common shape factors from pig point cloud data were successfully automatically extracted.To validate the effectiveness of the algorithm,a detailed analysis of 200 sets of point cloud data from 20 live pigs was conducted.Experimental results showed that the average total filtering error was 3.84%,and under the condition that the original point cloud accuracy reached 0.036 mm,the average measurement error of pig body dimension parameters was only 2.46%.Additionally,a principal component-based weight analysis on the 17 geometric parameters and 12 shape factors of pigs was conducted,discussing the weights of different body dimension parameters and shape factors in pig geometric morphology analysis.In summary,the research result can provide an effective method for high-throughput measurement of animal three-dimensional phenotypic parameters,not only improving measurement accuracy and efficiency but also providing strong support for in-depth research in fields such as animal selection breeding and health monitoring.

关键词

猪只/体尺/点云/数据批处理/多滤波器叠加

Key words

pig/body size/point cloud/batch processing of data/multiple filter superposition

分类

信息技术与安全科学

引用本文复制引用

黄霞,余松科,刘兴明,张博,朱锋博..基于点云的生猪体尺参数自动提取方法[J].农业机械学报,2025,56(8):496-506,11.

基金项目

国家自然科学基金项目(42101446)、中国博士后科学基金项目(2022T150488)、中国—东盟卫星遥感应用重点实验室开放课题(GDMY202308)和成都工业学院校级项目(2023RC009) (42101446)

农业机械学报

OA北大核心

1000-1298

访问量0
|
下载量0
段落导航相关论文