| 注册
首页|期刊导航|空天防御|轻薄红外计算成像重建算法的边缘芯片部署方法研究

轻薄红外计算成像重建算法的边缘芯片部署方法研究

赵紫昱 王绪泉 马杰 邢裕杰 顿雄 王占山 程鑫彬

空天防御2025,Vol.8Issue(4):85-93,9.
空天防御2025,Vol.8Issue(4):85-93,9.

轻薄红外计算成像重建算法的边缘芯片部署方法研究

Edge Chip Deployment Methods for Lightweight Infrared Computational Imaging Reconstruction Algorithms

赵紫昱 1王绪泉 1马杰 2邢裕杰 1顿雄 1王占山 1程鑫彬1

作者信息

  • 1. 同济大学 物理科学与工程学院 精密光学工程技术研究所,上海 200092||同济大学 先进微结构材料教育部重点实验室,上海 200092
  • 2. 同济大学 电子与信息工程学院,上海 200092
  • 折叠

摘要

Abstract

By integrating intelligent algorithm-driven image processing techniques,computational imaging has the potential to transcend the limits of conventional hardware-centric optical systems,enabling optical systems to achieve high performance and a compact design.Focusing on the image reconstruction requirements in lightweight infrared single-lens computational imaging,this study investigated lightweight model deployment methodologies tailored for edge AI chips.Through targeted operator optimisation,model pruning,and quantisation implemented on edge devices,the deployed U-Net reconstruction model achieved a 52.3%reduction in parameters and a 60.3%reduction in computational operations,resulting in a 56%acceleration in edge processing frame rate while sacrificing only 0.91 dB in PSNR and 0.021 in SSIM.Further architectural simplification allowed ultra-high-speed video-rate on-chip image reconstruction exceeding 95 FPS,at the cost of just 1.3 dB PSNR and 0.018 SSIM.The experiments examined edge hardware acceleration for computational single-chip infrared camera reconstruction algorithms.This study provides technical references for engineering applications of lightweight infrared computational imaging systems.

关键词

红外成像/计算成像/边缘计算/深度学习/模型优化/硬件加速

Key words

infrared imaging/computational imaging/edge computing/deep learning/model optimization/hardware acceleration

分类

信息技术与安全科学

引用本文复制引用

赵紫昱,王绪泉,马杰,邢裕杰,顿雄,王占山,程鑫彬..轻薄红外计算成像重建算法的边缘芯片部署方法研究[J].空天防御,2025,8(4):85-93,9.

基金项目

国家自然科学基金项目(62305250,62105243) (62305250,62105243)

空天防御

2096-4641

访问量0
|
下载量0
段落导航相关论文