| 注册
首页|期刊导航|压力容器|基于自适应多特征融合的12Cr1MoV钢球化等级智能判定研究

基于自适应多特征融合的12Cr1MoV钢球化等级智能判定研究

王海斌 程经纬 董杰 王家辉

压力容器2025,Vol.42Issue(5):12-21,10.
压力容器2025,Vol.42Issue(5):12-21,10.DOI:10.3969/j.issn.1001-4837.2025.05.002

基于自适应多特征融合的12Cr1MoV钢球化等级智能判定研究

Research on intelligent determination of spheroidization grade for 12Cr1MoV steel based on adaptive multi-feature fusion

王海斌 1程经纬 1董杰 1王家辉1

作者信息

  • 1. 合肥通用机械研究院有限公司 国家压力容器与管道安全工程技术研究中心,合肥 230031
  • 折叠

摘要

Abstract

To address the issue of human bias in determining the spheroidization grade of 12Cr1MoV steel,a machine learning algorithm based on adaptive multi-feature fusion is proposed,along with the development of spheroidization image rating software.By collecting 263 metallographic image samples of pressure equipment made of 12Cr1MoV steel after long-term service(including 147 pearlite spheroidization images and 116 bainite spheroidization images),a recognition model was constructed by integrating Canny edge features,fractal dimension features,and deep learning features.The results show that for pearlite spheroidization images,the recognition accuracy of the adaptive multi-feature fusion model reaches 93%,which is 39%higher than that of the traditional Canny-XGBoost method.For bainite spheroidization images,the accuracy is 90%,representing a relative improvement of 42%.This study significantly improves the accuracy and efficiency of spheroidization grade determination,achieving intelligent evaluation of spheroidization grades under small-sample conditions,which is of great significance for ensuring equipment safety.

关键词

12Cr1MoV钢球化/自适应多特征融合/机器学习/智能评级

Key words

12Cr1MoV steel spheroidization/adaptive multi-feature fusion/machine learning/intelligent rating

分类

机械制造

引用本文复制引用

王海斌,程经纬,董杰,王家辉..基于自适应多特征融合的12Cr1MoV钢球化等级智能判定研究[J].压力容器,2025,42(5):12-21,10.

基金项目

合肥通用机械研究院有限公司青年基金项目(2022011502) (2022011502)

压力容器

OA北大核心

1001-4837

访问量0
|
下载量0
段落导航相关论文