| 注册
首页|期刊导航|重庆科技大学学报(自然科学版)|基于改进YOLOv11n的下水管道裂缝识别算法

基于改进YOLOv11n的下水管道裂缝识别算法

邱丹丹 郑少峰

重庆科技大学学报(自然科学版)2025,Vol.27Issue(4):69-76,109,9.
重庆科技大学学报(自然科学版)2025,Vol.27Issue(4):69-76,109,9.DOI:10.19406/j.issn.2097-4531.2025.04.008

基于改进YOLOv11n的下水管道裂缝识别算法

Crack Recognition Algorithm for Sewer Pipes Based on Improved YOLOv11n

邱丹丹 1郑少峰1

作者信息

  • 1. 福建理工大学 交通运输学院,福州 350118
  • 折叠

摘要

Abstract

To address the issue of insufficient detection accuracy of cracks in sewer pipes,a crack recognition algo-rithm based on an improved YOLOv11n for sewer pipelines is proposed.Firstly,the C3K2-MSCB2 module is de-signed to effectively resolve the information bottleneck problem in feature extraction and significantly reduce the pre-cision loss.Then,the coordinate attention mechanism is introduced to optimize the traditional SPPF layer,thereby enhancing the model's recognition performance.Finally,the Concat module in the feature fusion network is re-placed with the BiFPN module,ensuring the stability of detection accuracy while reducing the model complexity.The experimental results indicate that,compared to the YOLOv11n model,the improved model has increased its PmA@50 of increased from 82.9%to 87.3%,and PmA@50∶95 from 45.2%to 49.1%,demonstrating enhanced accura-cy in object detection.In addition,the confidence level of the improved model has also shown significant improve-ment,thoroughly validating its stability and reliability in complex environments.

关键词

目标检测/下水管道/C3K2-MSCB2模块/坐标注意力机制/BiFPN模块

Key words

object detection/sewer pipes/C3K2-MSCB2 module/coordinate attention mechanism/BiFPN module

分类

信息技术与安全科学

引用本文复制引用

邱丹丹,郑少峰..基于改进YOLOv11n的下水管道裂缝识别算法[J].重庆科技大学学报(自然科学版),2025,27(4):69-76,109,9.

基金项目

福建省科技厅引导性项目"基于AI的管道特种机器人系列产品研发"(2021H0025) (2021H0025)

福建省教育厅研究生教研项目"基于'新工科'实验室的产学研用深度融合研究"(FBJG20220116) (FBJG20220116)

重庆科技大学学报(自然科学版)

1673-1980

访问量0
|
下载量0
段落导航相关论文