| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于Layer-wised个性化联邦学习的丢包加密流量分类

基于Layer-wised个性化联邦学习的丢包加密流量分类

秦天 程光 卫亦辰 何濛

东南大学学报(自然科学版)2025,Vol.55Issue(5):1486-1492,7.
东南大学学报(自然科学版)2025,Vol.55Issue(5):1486-1492,7.DOI:10.3969/j.issn.1001-0505.2025.05.031

基于Layer-wised个性化联邦学习的丢包加密流量分类

Packet loss encrypted traffic classification based on layer-wised personalized federated learning

秦天 1程光 2卫亦辰 1何濛1

作者信息

  • 1. 东南大学网络空间安全学院,南京 211189
  • 2. 东南大学网络空间安全学院,南京 211189||紫金山实验室,南京 211189||江苏省泛在网络安全工程研究中心,南京 211189
  • 折叠

摘要

Abstract

In the open client-edge-cloud architecture,the performance limitations of data collection and analy-sis devices often lead to packet loss in traffic samples collected at high-throughput traffic gateways,which ad-versely affects the training and application of network traffic classification models.To address this issue,a layer-wised personalized federated learning model training scheme was proposed.This scheme established dis-tributed nodes in traffic sample data under different packet loss rates,collaboratively trained classification mod-els,and dynamically adjusted parameter weights to achieve precise identification of encrypted traffic samples under different packet loss rates.The experimental results show that this method successfully completes the ap-plication classification task for encrypted traffic with a packet loss rate of no more than 20%.In scenarios with extremely uneven sample distribution and low-quality data,the classification accuracy exceeds 88%.The ef-fectiveness of the proposed method in high packet loss environments is validated,providing a new solution for the classification of encrypted traffic.

关键词

加密流量分类/联邦学习/个性化机器学习/网络测量

Key words

encrypted traffic classification/federated learning/personalized machine learning/network mea-surement

分类

信息技术与安全科学

引用本文复制引用

秦天,程光,卫亦辰,何濛..基于Layer-wised个性化联邦学习的丢包加密流量分类[J].东南大学学报(自然科学版),2025,55(5):1486-1492,7.

基金项目

国家自然科学基金联合基金资助项目(U22B2025) (U22B2025)

国家自然科学基金面上基金资助项目(62172093) (62172093)

国家自然科学基金青年基金资助项目(62202097) (62202097)

中国博士后科学基金资助项目(2024T170143). (2024T170143)

东南大学学报(自然科学版)

OA北大核心

1001-0505

访问量0
|
下载量0
段落导航相关论文