| 注册
首页|期刊导航|东南大学学报(英文版)|基于深度学习和计算机视觉的桥梁预制箱梁截面几何参数识别

基于深度学习和计算机视觉的桥梁预制箱梁截面几何参数识别

贾景伟 倪有豪 茅建校 徐寅飞 王浩

东南大学学报(英文版)2025,Vol.41Issue(3):278-285,8.
东南大学学报(英文版)2025,Vol.41Issue(3):278-285,8.DOI:10.3969/j.issn.1003-7985.2025.03.003

基于深度学习和计算机视觉的桥梁预制箱梁截面几何参数识别

Geometric parameter identification of bridge precast box girder sections based on deep learning and computer vision

贾景伟 1倪有豪 1茅建校 1徐寅飞 1王浩1

作者信息

  • 1. 东南大学混凝土及预应力混凝土结构教育部重点实验室,南京 211189
  • 折叠

摘要

Abstract

To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geomet-ric parameters for bridge prefabricated components,a method based on deep learning and computer vision is devel-oped to identify the geometric parameters.The study uti-lizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learn-ing model is developed to identify the geometric parameters of the precast components using the extracted edge coordi-nates from the images as input and the predefined control pa-rameters of the bridge section as output.A dataset is gener-ated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The re-sults indicate that the developed method effectively identi-fies the geometric parameters of bridge precast components,with an error rate maintained within 5%.

关键词

桥梁预制构件/截面几何参数/尺寸识别/计算机视觉/深度学习

Key words

bridge precast components/section geometry parameters/size identification/computer vision/deep learning

分类

交通工程

引用本文复制引用

贾景伟,倪有豪,茅建校,徐寅飞,王浩..基于深度学习和计算机视觉的桥梁预制箱梁截面几何参数识别[J].东南大学学报(英文版),2025,41(3):278-285,8.

基金项目

The National Natural Science Foundation of China(No.52338011,52378291),Young Elite Scientists Sponsorship Pro-gram by CAST(No.2022-2024QNRC0101). (No.52338011,52378291)

东南大学学报(英文版)

1003-7985

访问量0
|
下载量0
段落导航相关论文