| 注册
首页|期刊导航|电气技术|基于二次分解和混合深度神经网络的短期风电功率预测

基于二次分解和混合深度神经网络的短期风电功率预测

何宁静 张程

电气技术2025,Vol.26Issue(9):34-44,11.
电气技术2025,Vol.26Issue(9):34-44,11.

基于二次分解和混合深度神经网络的短期风电功率预测

Short term wind power forecasting model based on secondary decomposition and hybrid deep neural network

何宁静 1张程2

作者信息

  • 1. 福建理工大学电子电气与物理学院,福州 350118
  • 2. 福建理工大学电子电气与物理学院,福州 350118||智能电网仿真分析与综合控制福建省高校工程研究中心,福州 350118
  • 折叠

摘要

Abstract

Given the volatility and randomness of wind power,a model for short term wind power forecasting which utilizes secondary mode decomposition and an secretary bird optimization algorithm(SBOA)-optimized temporal convolutional netwaork(TCN)-bidirectional gate recurrent unit(BiGRU)-Attention mechanism to enhance prediction accuracy.Firstly,complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)and variational mode decomposition(VMD)algorithms are applied for secondary mode decomposition of the wind power time series.Secondly,the decomposed sub-series are fed into the SBOA-TCN-BiGRU-Attention network for combined prediction,with the SBOA optimizing the neural network's hyperparameters to avoid local optima.Finally,the predicted values of the sub-series are aggregated to derive the final result.The simulation findings indicate the proposed combined forecasting method predicts short term wind power with high accuracy.

关键词

风电功率预测/二次分解/秘书鸟优化算法/时序卷积网络

Key words

wind power forecasting/secondary decomposition/secretary bird optimization algo-rithm/temporal convolutional network

引用本文复制引用

何宁静,张程..基于二次分解和混合深度神经网络的短期风电功率预测[J].电气技术,2025,26(9):34-44,11.

基金项目

国家自然科学基金资助项目(52377088)福建省财政厅专项(GY-Z220230)福建省自然基金(2023J01951) (52377088)

电气技术

1673-3800

访问量0
|
下载量0
段落导航相关论文