| 注册
首页|期刊导航|广东工业大学学报|面向电力场景图像的动态自适应增量目标检测DA-IOD算法

面向电力场景图像的动态自适应增量目标检测DA-IOD算法

陈健华 袁浩亮 陈海淋 许方园

广东工业大学学报2025,Vol.42Issue(5):86-95,10.
广东工业大学学报2025,Vol.42Issue(5):86-95,10.DOI:10.12052/gdutxb.250089

面向电力场景图像的动态自适应增量目标检测DA-IOD算法

Dynamic Adaptive Enhancement for Power Scene Images DA-IOD Algorithm for Quantitative Target Detection

陈健华 1袁浩亮 1陈海淋 1许方园1

作者信息

  • 1. 广东工业大学 自动化学院,广东 广州 510006
  • 折叠

摘要

Abstract

Aiming to address the problems of insufficient adaptability to new targets and inability to perform incremental detection in power scenarios using traditional target detection technologies,this paper proposes a Dynamic Adaptive Incremental Object Detection algorithm for power scene images(DA-IOD).Firstly,a Task-Aligned Adaptive Feature Decoupling(TAFD)module is adopted to enhance the feature representation capability.Secondly,an Ultra-lightweight and Effective Dynamic Upsampler(DySample)is introduced to reduce computational burden and latency.Finally,a Complete Intersection over Union(CIoU)regression loss function is designed to modify the loss function of the baseline incremental Efficient-IOD algorithm,which further improves the detection accuracy of the proposed algorithm.In the 3+3 single-step incremental scenario of the Guangdong Power Grid Smart On-site Operation Dataset,out proposed method achieves an improvement of 2.4 percentage points in the mean Average Precision(mAP)when compared with the baseline algorithm.

关键词

电网现场作业/输电线路/深度学习/目标检测/增量学习

Key words

on-site power grid operation/transmission line/deep learning/object detection/incremental learning

分类

信息技术与安全科学

引用本文复制引用

陈健华,袁浩亮,陈海淋,许方园..面向电力场景图像的动态自适应增量目标检测DA-IOD算法[J].广东工业大学学报,2025,42(5):86-95,10.

基金项目

广东省自然科学基金资助面上项目(2023A1515011041) (2023A1515011041)

南方电网公司科技项目(030100KK52230001) (030100KK52230001)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文