| 注册
首页|期刊导航|广东工业大学学报|基于注意力机制的无监督GAN多聚焦图像融合

基于注意力机制的无监督GAN多聚焦图像融合

蒋云峰 李伟彤

广东工业大学学报2025,Vol.42Issue(5):112-120,9.
广东工业大学学报2025,Vol.42Issue(5):112-120,9.DOI:10.12052/gdutxb.240097

基于注意力机制的无监督GAN多聚焦图像融合

Unsupervised GAN Multi-focus Image Fusion Based on Attention Mechanism

蒋云峰 1李伟彤1

作者信息

  • 1. 广东工业大学 信息工程学院,广东 广州 51000
  • 折叠

摘要

Abstract

An unsupervised generative adversarial network is proposed to solve the problems of boundary blurring and information loss in the focusing and defocusing regions of existing multi-focus image fusion methods.By constructing a generator with complex attention feature extraction module,the global and local features of the source image can be fully extracted and the learning of image color information can be strengthened.The combined gradient of the source image is used as the input of the discriminator to enhance the extraction of texture details.Combined with structural similarity and peak signal-to-noise ratio,the structure perception loss is proposed to further improve the quality of the fused image.The experimental results of Lytro data set show that,compared with 7 representative fusion algorithms,this method achieves good fusion performance in both subjective and objective evaluation,among which the indices PSNR,AG,SF,and EI reach 52.38,8.25,22.74,and 85.96,respectively,representing improvements of 5.5%,2.2%,1.4%,and 2.1%over the second-best algorithm.

关键词

多聚焦图像融合/注意力机制/无监督学习/生成对抗网络

Key words

multi-focus image fusion/attention mechanism/unsupervised learning/generative adversarial network

分类

信息技术与安全科学

引用本文复制引用

蒋云峰,李伟彤..基于注意力机制的无监督GAN多聚焦图像融合[J].广东工业大学学报,2025,42(5):112-120,9.

基金项目

广东省科技计划项目(2017A010101016) (2017A010101016)

广东工业大学学报

1007-7162

访问量0
|
下载量0
段落导航相关论文