| 注册
首页|期刊导航|计算机工程与应用|全局形状关系约束的点云三维目标检测方法

全局形状关系约束的点云三维目标检测方法

鲜世洋 李宗民 公绪超 徐畅 张鹏 王文超 白云 戎光彩

计算机工程与应用2025,Vol.61Issue(18):132-141,10.
计算机工程与应用2025,Vol.61Issue(18):132-141,10.DOI:10.3778/j.issn.1002-8331.2406-0146

全局形状关系约束的点云三维目标检测方法

Point Cloud 3D Object Detection Method with Global Shape Relation Constraints

鲜世洋 1李宗民 1公绪超 2徐畅 1张鹏 1王文超 1白云 1戎光彩1

作者信息

  • 1. 中国石油大学(华东)青岛软件学院、计算机科学与技术学院,山东 青岛 266580
  • 2. 中国石化集团 胜利石油管理局,山东 东营 257000
  • 折叠

摘要

Abstract

Voting-based method has shown great potential in indoor 3D object detection tasks,where voting directly deter-mines the quality of the detection results.However,seed points located in overlapping areas of objects are prone to errone-ous voting,mapping them near incorrect target object centers.Considering that these seed points are usually continuous on the geometric surface,introducing shape relations can improve this issue.Specifically,a shape relation extraction module is proposed,which constructs a 2D manifold and represents shape relations based on Euclidean distance on the manifold,then implements shape relation constraints on the point cloud through matrix multiplication.To obtain geometric surface continuity information,a binary tree Transformer module is designed.The point cloud constrained by shape rela-tions captures global context through an optimized Transformer network,thus learning the surface structure of objects.Comparative experiments using the ScanNet and SUN RGB-D datasets show that the proposed algorithm achieves mAP@0.25 scores of 65.1%and 62.7%,respectively,improving by 6.5 and 5 percentage points compared to baseline methods,and outperforming the current state-of-the-art methods by 0.6 and 1.1 percentage points,respectively.

关键词

三维目标检测/点云/流形学习/Transformer/形状关系

Key words

3D object detection/point cloud/manifold learning/Transformer/shape relation

分类

信息技术与安全科学

引用本文复制引用

鲜世洋,李宗民,公绪超,徐畅,张鹏,王文超,白云,戎光彩..全局形状关系约束的点云三维目标检测方法[J].计算机工程与应用,2025,61(18):132-141,10.

基金项目

国家重点研发计划(2019YFF0301800) (2019YFF0301800)

国家自然科学基金(61379106,62207011) (61379106,62207011)

山东省自然科学基金(ZR2013FM036,ZR2015FM011) (ZR2013FM036,ZR2015FM011)

中石化博士后科研基金(YKB2411). (YKB2411)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文