| 注册
首页|期刊导航|计算机工程与应用|基于RL-Net改进的可解释规则学习方法

基于RL-Net改进的可解释规则学习方法

张道胜 蒙祖强

计算机工程与应用2025,Vol.61Issue(18):157-165,9.
计算机工程与应用2025,Vol.61Issue(18):157-165,9.DOI:10.3778/j.issn.1002-8331.2406-0062

基于RL-Net改进的可解释规则学习方法

Improved Interpretable Rule Learning Method Based on RL-Net

张道胜 1蒙祖强1

作者信息

  • 1. 广西大学 计算机与电子信息学院,南宁 530004
  • 折叠

摘要

Abstract

As the demand for interpretable,transparent,and effective models continues to grow,rule-based classification models have become a research focus due to their intuitive understanding and good performance.In view of the fact that many existing models are limited by difficulties in structural optimization or rely on specific heuristic search strategies,a network structure SRL-Net based on RL-Net is proposed.This model learns rules through neural networks,introduces attention mechanism and pruning layer into the network,and aims to improve the accuracy and simplicity of learning rules while improving model performance,reducing unnecessary rules,and using the pruning"mask"to realize the sec-ondary refinement of rules to obtain a concise list of explainable rules.SRL-Net is experimentally verified on 12 datasets.The results show that SRL-Net has good performance on datasets of different sizes.Compared with the other 8 models,SRL-Net achieves the highest accuracy in 8 datasets and the highest value in 9 datasets.The rule complexity is reduced by about 50%on average compared with RL-Net.The experiment show that SRL-Net is an effective interpretable rule learning method.

关键词

可解释性/规则学习/神经网络

Key words

interpretability/rule learning/neural networks

分类

信息技术与安全科学

引用本文复制引用

张道胜,蒙祖强..基于RL-Net改进的可解释规则学习方法[J].计算机工程与应用,2025,61(18):157-165,9.

基金项目

国家自然科学基金(62266004). (62266004)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文