| 注册
首页|期刊导航|计算机工程与应用|基于联合卷积的时序知识图谱推理

基于联合卷积的时序知识图谱推理

张成珅 马汉达

计算机工程与应用2025,Vol.61Issue(18):166-174,9.
计算机工程与应用2025,Vol.61Issue(18):166-174,9.DOI:10.3778/j.issn.1002-8331.2406-0236

基于联合卷积的时序知识图谱推理

Temporal Knowledge Graph Reasoning Based on Joint Convolution

张成珅 1马汉达1

作者信息

  • 1. 江苏大学 计算机科学与通信工程学院,江苏 镇江 212013
  • 折叠

摘要

Abstract

Existing temporal knowledge graph reasoning models fail to fully explore the structural dependencies and potential relationships among concurrent facts in temporal knowledge graphs.Additionally,these models often rely on simplistic and unreasonable time encoding methods,resulting in inadequate temporal information acquisition.This paper proposes a temporal knowledge graph reasoning model based on joint convolution.This model uses a joint aggregator in a graph convolutional neural network to capture the surface semantics and latent features of node neighborhood informa-tion.It also employs vector and event attribute encoding for time to capture rich temporal information,enhancing the temporal sensitivity of the model.Experimental results on ICEWS14,ICEWS05-15,YAGO,and GDELT datasets demon-strate that the model consistently outperforms baseline models in MRR,Hits@1,Hits@3,and Hits@10,as well as in rela-tion prediction.

关键词

时序知识图谱/图卷积神经网络/门控循环单元/联合卷积

Key words

temporal knowledge graph/graph convolutional network/gated recurrent unit/joint convolution

分类

信息技术与安全科学

引用本文复制引用

张成珅,马汉达..基于联合卷积的时序知识图谱推理[J].计算机工程与应用,2025,61(18):166-174,9.

基金项目

镇江市重点研发计划项目(GY2023034). (GY2023034)

计算机工程与应用

OA北大核心

1002-8331

访问量0
|
下载量0
段落导航相关论文