| 注册
首页|期刊导航|交通运输工程与信息学报|基于神经网络算法的城市轨道交通网弹性评估

基于神经网络算法的城市轨道交通网弹性评估

叶森 吕兴 李盛杰 吴友鸿

交通运输工程与信息学报2025,Vol.23Issue(3):197-212,16.
交通运输工程与信息学报2025,Vol.23Issue(3):197-212,16.DOI:10.19961/j.cnki.1672-4747.2025.03.018

基于神经网络算法的城市轨道交通网弹性评估

Resilience assessment of urban rail transit network based on neural-network algorithm

叶森 1吕兴 1李盛杰 1吴友鸿1

作者信息

  • 1. 北京交通大学,数学与统计学院,北京 100044
  • 折叠

摘要

Abstract

[Background]As an important component of urban transportation,rail transit has devel-oped rapidly in terms of its network structure to accommodate increasing passenger traffic volume.The efficient operation of rail transportation systems is vital to the sustainable development of the ur-ban economy,society,and environment.However,the frequent random disturbances in daily opera-tions pose a significant challenge to the stability of rail transit networks and severely interfere with urban operations.[Objective]Researchers must analyze the dynamic response mechanism of rail transit networks during disturbances,quantitatively evaluate the performance of rail transit networks during disturbance events,and identify the key network components.This provides a scientific basis for the resource allocation and emergency management of rail transit networks.[Methods]By inte-grating complex network theory with the resilience triangle framework,we propose a neural-net-work-based resilience assessment method that incorporates three dimensions,i.e.,network topology,rational passenger travel paths,and origin-destination flow patterns.[Data]Using the Beijing rail transit network as a case study,we investigate resilience variations under random disturbances.[Con-clusion]The results show that the proposed model can comprehensively evaluate the performance re-tention of the rail transit network during disturbances,highlight critical nodes and lines,and over-come the limitations of the conventional static network-analysis method.This approach contributes significantly to ensuring network-safety stability and improving urban-transportation efficiency.

关键词

城市交通/弹性/神经网络/复杂网络/交通流预测/拓扑结构/合理路径

Key words

urban traffic/resilience/neural networks/complex networks/traffic flow prediction/to-pology/rational path

分类

交通工程

引用本文复制引用

叶森,吕兴,李盛杰,吴友鸿..基于神经网络算法的城市轨道交通网弹性评估[J].交通运输工程与信息学报,2025,23(3):197-212,16.

基金项目

先进轨道交通自主运行全国重点实验室开放课题资助项目(RCS2023K001) (RCS2023K001)

国家级大学生创新创业训练计划项目(202510004167) (202510004167)

交通运输工程与信息学报

1672-4747

访问量0
|
下载量0
段落导航相关论文