| 注册
首页|期刊导航|江苏农业学报|面向水稻杂草识别的高精度图像分类算法

面向水稻杂草识别的高精度图像分类算法

杨淑婷 李季 刘正予 马聪 王蓉

江苏农业学报2025,Vol.41Issue(8):1538-1552,15.
江苏农业学报2025,Vol.41Issue(8):1538-1552,15.DOI:10.3969/j.issn.1000-4440.2025.08.010

面向水稻杂草识别的高精度图像分类算法

High-precision image classification algorithm for recognition of rice weed

杨淑婷 1李季 2刘正予 3马聪 2王蓉4

作者信息

  • 1. 宁夏农林科学院农业经济与信息技术研究所,宁夏 银川 750002||宁夏数智农业工程技术研究中心,宁夏 银川 750002
  • 2. 宁夏农林科学院农业经济与信息技术研究所,宁夏 银川 750002
  • 3. 南京理工大学计算机科学与工程学院,江苏 南京 210018
  • 4. 农业农村部农产品质量安全监督检验测试中心<银川>,宁夏 银川 750002
  • 折叠

摘要

Abstract

To achieve accurate identification and removal of weeds during the seedling stage in rice fields,this study carried out a systematic study.By collecting and organizing images from real rice field environments,a rice-weed image classi-fication dataset was constructed.Based on this dataset,an innovative and efficient rice-weed image classification algorithm named YOLOv8n-cls-Swift was proposed.During the image feature extraction phase,SwiftFormer was employed to effectively extract discriminative features between rice plants and weeds under complex field conditions.In the classification prediction phase,an efficient weighted classification layer was designed to enable the model to focus more accurately on highly discrimi-native target feature regions,and significantly enhanced its ability to capture distinguishing characteristics.The results demonstrated that,the proposed model achieved a high rec-ognition accuracy.The precision herbicide application sys-tem for rice fields presented in this study can achieve fully automatic identification and removal of weeds,which is ex-pected to play a significant role in reducing pesticide use,improving efficiency,and protecting the environment in rice cultivation.

关键词

图像识别/水稻/深度学习/卷积神经网络/图像处理

Key words

image recognition/rice/deep learning/convolutional neural network/image processing

分类

农业科技

引用本文复制引用

杨淑婷,李季,刘正予,马聪,王蓉..面向水稻杂草识别的高精度图像分类算法[J].江苏农业学报,2025,41(8):1538-1552,15.

基金项目

宁夏自然科学基金项目(2023AAC03411) (2023AAC03411)

宁夏回族自治区重点研发项目(2023BCF01051、2024BBF01013) (2023BCF01051、2024BBF01013)

江苏农业学报

OA北大核心

1000-4440

访问量0
|
下载量0
段落导航相关论文