| 注册
首页|期刊导航|航空学报|基于传感器时序信息增强的剩余寿命预测方法

基于传感器时序信息增强的剩余寿命预测方法

曲桂娴 刘冬阳 杨旭 邱天 刘传凯 丁水汀 袁树峥 郭侃

航空学报2025,Vol.46Issue(17):132-146,15.
航空学报2025,Vol.46Issue(17):132-146,15.DOI:10.7527/S1000-6893.2025.31634

基于传感器时序信息增强的剩余寿命预测方法

Remaining useful life prediction method based on temporal information enhancement of sensors

曲桂娴 1刘冬阳 2杨旭 3邱天 1刘传凯 4丁水汀 1袁树峥 5郭侃6

作者信息

  • 1. 北京航空航天大学 航空发动机研究院,北京 100191||天目山实验室,杭州 310023||北京航空航天大学 未来航空发动机协同设计中心,北京 102206
  • 2. 北京航空航天大学 能源与动力工程学院,北京 100191
  • 3. 北京航空航天大学 航空发动机研究院,北京 100191
  • 4. 北京航空航天大学 航空发动机研究院,北京 100191||北京航空航天大学 未来航空发动机协同设计中心,北京 102206
  • 5. 中国航发北京航科发动机控制系统科技有限公司,北京 102200
  • 6. 北京工业大学 信息科学技术学院,北京 100124
  • 折叠

摘要

Abstract

To address the challenge of accurately predicting the Remaining Useful Life(RUL)of aircraft engines on-line,this paper pro-poses a novel RUL prediction method that enhances multi-source sensor temporal feature informa-tion.The approach first establishes a prediction network framework by integrating the self-attention mechanism with Bi-directional Long Short-Term Memory(Bi-LSTM)networks.This framework captures the long-term temporal depen-dencies of multi-source sensor signals and the coupling relationships between their time-varying performance,enabling the extraction of temporal features that in-fluence RUL.To address the potential gradient vanishing issue during train-ing,a residual module is introduced,improving model stability.Additionally,a multi-head self-attention mechanism is employed to extract and enhance key features,leading to dual improvements in both the accuracy and stability of RUL online prediction.Comparative experiments using NASA's C-MAPSS aircraft engine dataset demonstrate the effec-tiveness of the proposed method.The results show that the method leverages sensor temporal information to make precise RUL predictions and degradation trend forecasts across a wide range of time and spatial scales.Specifically,the Root Mean Square Error(RMSE)of RUL prediction is reduced by an average of 21.74%compared to other deep learning models,while the coefficient of determination(R2)is improved by an average of 15.81%.This approach of-fers valuable technical support for the development of aircraft engine health management systems and predictive main-tenance strategies.

关键词

航空发动机/剩余使用寿命/特征注意力/双向长短期记忆网络/残差网络/多头注意力机制

Key words

aircraft engine/remaining useful life/feature attention/bidirectional long short-term memory network/residual network/multi-head attention mechanism

分类

航空航天

引用本文复制引用

曲桂娴,刘冬阳,杨旭,邱天,刘传凯,丁水汀,袁树峥,郭侃..基于传感器时序信息增强的剩余寿命预测方法[J].航空学报,2025,46(17):132-146,15.

基金项目

国家自然科学基金(52302510) (52302510)

北京市自然科学基金(3252015) (3252015)

中央高校基本科研费专项资金(YWF-23-Q-1066) (YWF-23-Q-1066)

天目山实验室交叉创新研究团队项目(TK-2024-D-001) (TK-2024-D-001)

北航大学生创新创业训练计划项目(X202410006108) National Natural Science Foundation of China(52302510) (X202410006108)

Beijing Natural Science Foundation(3252015) (3252015)

the Fundamental Research Funds for the Central Universities(YWF-23-Q-1066) (YWF-23-Q-1066)

Tianmushan Laboratory Cross-Innovation Research Team Project(TK-2024-D-001) (TK-2024-D-001)

College Students'Innovative Entrepreneurial Training Program(X202410006108) (X202410006108)

航空学报

OA北大核心

1000-6893

访问量0
|
下载量0
段落导航相关论文