航空学报2025,Vol.46Issue(17):147-162,16.DOI:10.7527/S1000-6893.2025.31712
氢能飞机及航空动力多学科总体耦合设计
Multidisciplinary coupling design of hydrogen-powered aircraft and aviation propulsion
摘要
Abstract
Compared with traditional aircraft,hydrogen-powered aircraft undergo significant changes in aspects such as propulsion systems,fuel storage and transportation systems,and airframe structure.Firstly,a fuel cell hybrid power system model is established,integrating the polarization losses of the fuel cell with the overall performance of the electric-driven fan engine.Then,liquid hydrogen storage tank and hydrogen supply models are developed,and the pressure and temperature variations inside the tank during the hydrogen supply process are evaluated.Next,three-dimensional geometric modeling of the aircraft is performed,along with rapid aerodynamic assessment,and the impact of integrating the liquid hydrogen tank on the overall aerodynamic characteristics of the aircraft is analyzed.The variation of the aircraft's lift-to-drag ratio with the external shape is obtained.By considering fuel storage energy,pro-pulsion system power,and tank structural design,as the aircraft carries more energy,the weight efficiency of the liq-uid hydrogen storage tank can reach up to 80%.Considering both the fuel consumption rate and mass of the fuel cell hybrid power system,the layout of the hydrogen fuel tank is optimized,and a multi-dimensional match of fuel storage and transportation systems,propulsion systems,and aircraft airframe structure for the liquid hydrogen-powered aircraft is achieved,resulting in an integrated airframe-propulsion matching scheme.The study further shows that simply in-creasing the fuselage length results in a small change in the lift-to-drag ratio.The reduction in carbon emissions and the weight efficiency of the hydrogen tank are positively correlated with the increase in fuselage length.When the fuse-lage length is extended by 5%,the carbon emission can be reduced by 714 kg,corresponding to a 1.56%reduction rate.When the fuselage length is extended by 20%,the carbon emission can be reduced by 45 709 kg,achieving a 100%reduction rate,and the cruising time exceeds that of traditional aircraft by 10.04%.关键词
氢能飞机/多学科耦合/燃料电池/航空动力/发动机特性Key words
hydrogen-powered aircraft/multidisciplinary coupling/fuel cell/aviation propulsion/engine characteristics分类
航空航天引用本文复制引用
姬志行,王彦哲,梅晓雪,程莉雯,许子博,王占学..氢能飞机及航空动力多学科总体耦合设计[J].航空学报,2025,46(17):147-162,16.基金项目
先进航空动力创新工作站项目(HKCX2024-01-006) Advanced Aeronautical Power Innovation Workstation Project(HKCX2024-01-006) (HKCX2024-01-006)