| 注册
首页|期刊导航|华南理工大学学报(自然科学版)|基于深度学习的车道线检测算法

基于深度学习的车道线检测算法

岳永恒 赵志浩

华南理工大学学报(自然科学版)2025,Vol.53Issue(9):22-30,9.
华南理工大学学报(自然科学版)2025,Vol.53Issue(9):22-30,9.DOI:10.12141/j.issn.1000-565X.240609

基于深度学习的车道线检测算法

Lane Line Detection Algorithm Based on Deep Learning

岳永恒 1赵志浩1

作者信息

  • 1. 东北林业大学 土木与交通学院,黑龙江 哈尔滨 150040
  • 折叠

摘要

Abstract

Aiming at the problem of lane detection accuracy of intelligent vehicles in complex scenes,this paper proposed a lane line detection algorithm which incorporates a multi-scale spatial attention mechanism and a path aggregation network(PANet).The algorithm first introduced the pre-anchored frame UFLD lane detection model and incorporated a feature pyramid enhancement module PANet with depthwise separable convolution to achieve multi-scale feature extraction of images.Next,a multi-scale spatial attention module was designed in the network framework and a SimAM lightweight attention mechanism was introduced to enhance the focusing ability on target features.Then,an adaptive feature fusion module was designed to perform cross-scale fusion of feature maps output from PANet by intelligently adjusting the fusion weights of feature maps at different scales,so as to effectively enhance the network's ability to extract complex features.Finally,the application of TuSimple dataset detection proves that the proposed algorithm achieves a detection accuracy of 96.84%,representing a 1.02 percentage point improvement over the original algorithm,and outperforms conventional mainstream algorithms.Experimental results on the CULane dataset demonstrate that the proposed algorithm achieves an F1 score of 72.74%,outperfor-ming conventional mainstream methods with a 4.34 percentage point improvement over the baseline.Notably,it exhibits significant performance gains in extreme scenarios(e.g.,strong illumination and shadows),confirming its superior detection capability in complex environments.In addition,the real-time test shows that the model infe-rence speed reaches 118 f/s,which meets the real-time demand of intelligent vehicles.

关键词

车道线检测/深度学习/多尺度空间注意力机制/自适应特征融合

Key words

lane line detection/deep learning/multi-scale spatial attention module/adaptively feature fusion

分类

信息技术与安全科学

引用本文复制引用

岳永恒,赵志浩..基于深度学习的车道线检测算法[J].华南理工大学学报(自然科学版),2025,53(9):22-30,9.

基金项目

黑龙江省重点研发计划项目(JD22A014) (JD22A014)

国家车辆事故深度调查体系项目(NAIS-ZL-ZHGL-2020018) (NAIS-ZL-ZHGL-2020018)

国家自然科学基金项目(62173107)Supported by the Key R&D Program of Heilongjiang Province(JD22A014)and the National Natural Science Foundation of China(62173107) (62173107)

华南理工大学学报(自然科学版)

OA北大核心

1000-565X

访问量0
|
下载量0
段落导航相关论文