| 注册
首页|期刊导航|气象与环境学报|XGBoost方法在风电功率预报中的应用

XGBoost方法在风电功率预报中的应用

段云霞 李忠娴 李得勤

气象与环境学报2025,Vol.41Issue(3):36-43,8.
气象与环境学报2025,Vol.41Issue(3):36-43,8.DOI:10.3969/j.issn.1673-503X.2025.03.005

XGBoost方法在风电功率预报中的应用

Application of the XGBoost method in wind power forecasting

段云霞 1李忠娴 2李得勤3

作者信息

  • 1. 中国气象局东北冷涡研究重点开放实验室,辽宁沈阳 110166||沈阳市气象局,辽宁沈阳 110168
  • 2. 辽宁省气象局财务核算中心,辽宁沈阳 110166
  • 3. 中国气象局东北冷涡研究重点开放实验室,辽宁沈阳 110166||中国气象局沈阳大气环境研究所,辽宁沈阳 110166||沈阳农业与生态气象研究院,辽宁沈阳 110166
  • 折叠

摘要

Abstract

Using the wind power observation and training data from the 2014 Global Energy Forecasting Competi-tion(GEFCom2014),a study on the application of the XGBoost machine learning method in wind power forecas-ting was conducted.To assess the potential influence of variable distribution on machine learning models,wind power forecasting models were developed using zonal wind and meridional wind,as well as wind speed and wind direction as feature variables.Forecast experiments show that although the distributions of actual observed wind power and numerically forecasted wind speed generally follow the wind power curve,the high degree of dispersion is a major factor contributing to the uncertainty in wind power forecasts.While the correlation between zonal/me-ridional winds and wind power is not high,models trained with these features using XGBoost still achieve good forecasting performance comparable to those built directly with wind speed and wind direction.The forecast results of the models tend to underestimate wind power peaks and overestimate low power values,which may be attributed to errors in numerically forecasted wind speed.

关键词

风电功率/机器学习/XGBoost/风能预报

Key words

Wind power/Machine learning/XGBoost/Wind energy forecasting

分类

能源科技

引用本文复制引用

段云霞,李忠娴,李得勤..XGBoost方法在风电功率预报中的应用[J].气象与环境学报,2025,41(3):36-43,8.

基金项目

国家自然科学基金(42275171)资助. (42275171)

气象与环境学报

1673-503X

访问量0
|
下载量0
段落导航相关论文